6.下列不等式中,正確的是( 。
A.若x∈R,則$x+\frac{4}{x}≥4$B.若x∈R,則${x^2}+2+\frac{1}{{{x^2}+2}}≥2$
C.若x∈R,則${x^2}+1+\frac{1}{{{x^2}+1}}≥2$D.若a、b為正實(shí)數(shù),則$\frac{{\sqrt{a}+\sqrt}}{2}≥\sqrt{ab}$

分析 利用基本不等式的使用法則“一正二定三相等”即可判斷出正誤.

解答 解:x<0,時(shí),A不成立;B的等號(hào)不成立;
D.利用基本不等式的性質(zhì)可得:$\frac{\sqrt{a}+\sqrt}{2}$≥$\root{4}{ab}$,因此不成立.
C.利用基本不等式的性質(zhì)可得:${x^2}+1+\frac{1}{{{x^2}+1}}≥2$,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào).
故選:C.

點(diǎn)評(píng) 本題考查了基本不等式的使用法則“一正二定三相等”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.200件產(chǎn)品有5件次品,先從中任意抽去5間,其中至少有2件次品的抽法有( 。
A.A${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$種
B.C${\;}_{3}^{2}$C${\;}_{198}^{3}$種
C.C${\;}_{200}^{5}$-C${\;}_{197}^{5}$種
D.C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(1)求f(x)的定義域.
(2)若f(a)=2,求a的值;
(3)求證:f($\frac{1}{x}$)=-f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知α,β是兩個(gè)不重合的平面,m,n 是兩條不重合的直線(xiàn).下列命題中不正確的是( 。
A.若 m∥n,m⊥α,則 n⊥αB.若 m⊥α,m⊥β,則α⊥β
C.若 m⊥α,m⊥β,則α∥βD.若 m∥α,m?β,α∩β=n,則 m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知正四棱臺(tái)的上、下底面面積分別為4、16,一側(cè)面面積為12,分別求該棱臺(tái)的斜高、高、側(cè)棱長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某企業(yè)共有3 200名職工,其中青、中、老年職工的比例為3:5:2.若從所有職工中抽取一個(gè)容量為400的樣本,則采用哪種抽樣方法更合理?青、中、老年職工應(yīng)分別抽取多少人?每人被抽取的可能性相同嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=|x-1|-2|x+1|的最大值為k.
(1)求k的值;
(2)若a,b,c∈R,$\frac{{a}^{2}{+c}^{2}}{2}$+b2=k,求b(a+c)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知二次函數(shù)f(x)滿(mǎn)足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)當(dāng)x∈[-2,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(1)求出y關(guān)于x的線(xiàn)性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)試預(yù)測(cè)加工10個(gè)零件需要多少小時(shí)?
(3)此回歸方程擬合效果如何?
零件個(gè)數(shù)x(個(gè))2345
加工時(shí)

]y(小時(shí))
2.5344.5

查看答案和解析>>

同步練習(xí)冊(cè)答案