A. | 若x∈R,則$x+\frac{4}{x}≥4$ | B. | 若x∈R,則${x^2}+2+\frac{1}{{{x^2}+2}}≥2$ | ||
C. | 若x∈R,則${x^2}+1+\frac{1}{{{x^2}+1}}≥2$ | D. | 若a、b為正實(shí)數(shù),則$\frac{{\sqrt{a}+\sqrt}}{2}≥\sqrt{ab}$ |
分析 利用基本不等式的使用法則“一正二定三相等”即可判斷出正誤.
解答 解:x<0,時(shí),A不成立;B的等號(hào)不成立;
D.利用基本不等式的性質(zhì)可得:$\frac{\sqrt{a}+\sqrt}{2}$≥$\root{4}{ab}$,因此不成立.
C.利用基本不等式的性質(zhì)可得:${x^2}+1+\frac{1}{{{x^2}+1}}≥2$,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào).
故選:C.
點(diǎn)評(píng) 本題考查了基本不等式的使用法則“一正二定三相等”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$種 | |
B. | C${\;}_{3}^{2}$C${\;}_{198}^{3}$種 | |
C. | C${\;}_{200}^{5}$-C${\;}_{197}^{5}$種 | |
D. | C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若 m∥n,m⊥α,則 n⊥α | B. | 若 m⊥α,m⊥β,則α⊥β | ||
C. | 若 m⊥α,m⊥β,則α∥β | D. | 若 m∥α,m?β,α∩β=n,則 m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
零件個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工時(shí) 間 ]y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com