A. | $f(x)=x,g(x)={(\sqrt{x})^2}$ | B. | $f(x)=\left|x\right|,g(x)=\sqrt{[}3]{x^3}$ | ||
C. | $f(x)={x^2},g(x)=\left\{\begin{array}{l}{x^2},(x>0)\\-{x^2},(x<0)\end{array}\right.$ | D. | $f(x)=\frac{{{x^2}-1}}{x-1},g(t)=t+1(t≠1)$ |
分析 根據(jù)函數(shù)的定義及三要素,兩函數(shù)必須定義域、對(duì)應(yīng)法則相同才是同一函數(shù),:A,兩函數(shù)定義域不一樣; 對(duì)于 B,兩函數(shù)對(duì)應(yīng)法則、值域不一樣; C,兩定義域、函數(shù)值域不一樣;D,兩函數(shù)定義域,對(duì)應(yīng)法則都一樣,故是同一函數(shù),.
解答 解:對(duì)于A,兩函數(shù)定義域不一樣,故錯(cuò);
對(duì)于 B,兩函數(shù)對(duì)應(yīng)法則、值域不一樣,故錯(cuò);
對(duì)于C,兩函數(shù)值域不一樣,故錯(cuò);
對(duì)于D,兩函數(shù)定義域,對(duì)應(yīng)法則都一樣,故是同一函數(shù),正確.
故選:D.
點(diǎn)評(píng) 本題考查了函數(shù)的定義及三要素,同一函數(shù)的判定,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點(diǎn)M到AB的距離為$\frac{{\sqrt{2}}}{2}$ | B. | AB與EF所成角是90° | ||
C. | 三棱錐C-DNE的體積是$\frac{1}{6}$ | D. | EF與MC是異面直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[0,1) | 10 | b |
[1,2) | 20 | 0.20 |
[2,3) | a | 0.30 |
[3,4) | 20 | 0.20 |
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合計(jì) | 100 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{3}{2}$,+∞) | B. | (-∞,-$\frac{3}{2}$) | C. | (-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞) | D. | (-$\frac{3}{2}$,$\frac{3}{2}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com