15.設(shè)映射f:x→x2+2x-1是實(shí)數(shù)集M到實(shí)數(shù)集N的映射.若對(duì)于實(shí)數(shù)a∈N,在M中不存在原像,則a的取值范圍是a<-2.

分析 將二次函數(shù)配方,求出二次函數(shù)的值域;求出值域的補(bǔ)集即為k的取值范圍.

解答 解:∵y=x2+2x-1=(x+1)2-2≥-2,
∴函數(shù)的值域?yàn)閇-2,+∞).
∵對(duì)于實(shí)數(shù)a∈N,在M中不存在原像,
∴a<-2
故答案為a<-2.

點(diǎn)評(píng) 本題考查二次函數(shù)的值域的求法:配方求出二次函數(shù)的對(duì)稱軸.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{1}{{{4^x}-1}}+2a$是奇函數(shù)
(1)求常數(shù)a的值
(2)判斷函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某四棱柱的三視圖如圖所示,則該四棱柱的體積為( 。
A.$\frac{5}{4}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)求數(shù)列$1\frac{1}{2},2\frac{1}{4},3\frac{1}{8},4\frac{1}{16},…$前n項(xiàng)的和
(2)已知數(shù)列{an}的前n項(xiàng)和sn滿足sn=2n+1-1,求它的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.
(1)若a,b,c成等比數(shù)列,cos B=$\frac{3}{5}$,求$\frac{cosA}{sinA}+\frac{cosC}{sinC}$的值.
(2)若角A,B,C成等差數(shù)列,且b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列命題:①如果x=y,則sinx=siny;②如果a>b,則a2>b2;③A,B是兩個(gè)不同定點(diǎn),動(dòng)點(diǎn)P滿足|PA|+|PB|是常數(shù),則動(dòng)點(diǎn)P的軌跡是橢圓.其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={x|x2-4<0},B={x|-1<x≤5},則A∩(∁RB)=( 。
A.(-2,0)B.(-2,-1)C.(-2,-1]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a>0且a≠1,函數(shù)$f(x)={log_a}({x+1})+{log_{\frac{1}{a}}}({3+x})$,
(1)求函數(shù)f(x)的定義域;
(2)將函數(shù)y=f(x)的圖象向右平移兩個(gè)單位后得到函數(shù)y=g(x)的圖象,若實(shí)數(shù)x滿足g(x)≥0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列各組函數(shù)中表示同一函數(shù)的是( 。
A.$f(x)=x,g(x)={(\sqrt{x})^2}$B.$f(x)=\left|x\right|,g(x)=\sqrt{[}3]{x^3}$
C.$f(x)={x^2},g(x)=\left\{\begin{array}{l}{x^2},(x>0)\\-{x^2},(x<0)\end{array}\right.$D.$f(x)=\frac{{{x^2}-1}}{x-1},g(t)=t+1(t≠1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案