【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進(jìn),到目前,中國(guó)擁有世界上最大的快遞市場(chǎng).某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(guò)(不足,按計(jì)算)需再收5元.
該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:
公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來(lái)5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;
(2)①估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
②根據(jù)以往的經(jīng)驗(yàn),公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),其余的用作其他費(fèi)用.目前前臺(tái)有工作人員3人,每人每天攬件不超過(guò)150件,日工資100元.公司正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?
【答案】(1)(2)①平均值可估計(jì)為15元. ②公司不應(yīng)將前臺(tái)工作人員裁員1人.
【解析】分析:(1)利用古典概型概率公式可估計(jì)樣本中包裹件數(shù)在之間的概率為,服從二項(xiàng)分布,從而可得結(jié)果;(2)①整理所給數(shù)據(jù),直接利用平均值公式求解即可;②若不裁員,求出公司每日利潤(rùn)的數(shù)學(xué)期望,若裁員一人,求出公司每日利潤(rùn)的數(shù)學(xué)期望,比較裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望即可得結(jié)果.
詳解:(1)樣本中包裹件數(shù)在101~300之間的天數(shù)為36,頻率,
故可估計(jì)概率為,
顯然未來(lái)5天中,包裹件數(shù)在101~300之間的天數(shù)服從二項(xiàng)分布,
即,故所求概率為
(2)①樣本中快遞費(fèi)用及包裹件數(shù)如下表:
包裹重量(單位:) | 1 | 2 | 3 | 4 | 5 |
快遞費(fèi)(單位:元) | 10 | 15 | 20 | 25 | 30 |
包裹件數(shù) | 43 | 30 | 15 | 8 | 4 |
故樣本中每件快遞收取的費(fèi)用的平均值為,
故該公司對(duì)每件快遞收取的費(fèi)用的平均值可估計(jì)為15元.
②根據(jù)題意及(2)①,攬件數(shù)每增加1,公司快遞收入增加15(元),
若不裁員,則每天可攬件的上限為450件,公司每日攬件數(shù)情況如下:
包裹件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件數(shù)(近似處理) | 50 | 150 | 250 | 350 | 450 |
實(shí)際攬件數(shù) | 50 | 150 | 250 | 350 | 450 |
頻率 | 0.1 | 0.1 | 0.5 | 0.2 | 0.1 |
50×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260 |
故公司平均每日利潤(rùn)的期望值為(元);
若裁員1人,則每天可攬件的上限為300件,公司每日攬件數(shù)情況如下:
包裹件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件數(shù)(近似處理) | 50 | 150 | 250 | 350 | 450 |
實(shí)際攬件數(shù) | 50 | 150 | 250 | 300 | 300 |
頻率 | 0.1 | 0.1 | 0.5 | 0.2 | 0.1 |
50×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235 |
故公司平均每日利潤(rùn)的期望值為(元)
因,故公司不應(yīng)將前臺(tái)工作人員裁員1人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過(guò)a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,,分組的頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計(jì)該市每戶居民月平均用電量的值;
用頻率估計(jì)概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布
估計(jì)該市居民月平均用電量介于度之間的概率;
利用的結(jié)論,從該市所有居民中隨機(jī)抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若是的一條切線,求的值;
(3)已知,為整數(shù),若對(duì)任意,都有恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高三某班有60名學(xué)生(其中女生有20名),三好學(xué)生占,而且三好學(xué)生中女生占一半,現(xiàn)在從該班任選一名學(xué)生參加座談會(huì),則在已知沒(méi)有選上女生的條件下,選上的是三好學(xué)生的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量(單位:克)分別在,,,,,中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率;
(2)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:
方案:所有芒果以10元/千克收購(gòu);
方案:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),高于或等于250克的以3元/個(gè)收購(gòu).
通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(江蘇省南通市2018屆高三最后一卷 --- 備用題數(shù)學(xué)試題)已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)處的切線方程;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),求的取值范圍;
(3)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已經(jīng)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對(duì),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,設(shè)底面ABCD是邊長(zhǎng)為1的正方形,PA⊥面ABCD.
(1)求證:PC⊥BD;
(2)過(guò)BD且與直線PC垂直的平面與PC交于點(diǎn)E,當(dāng)三棱錐E﹣BCD的體積最大時(shí),求二面角E﹣BD﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且.若對(duì)任意的,,都有.
(1)判斷函數(shù)的單調(diào)性,并說(shuō)明理由;
(2)若,求實(shí)數(shù)的取值范圍;.
(3)若不等式對(duì)任意和都恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com