10.已知A(-1,2),B(0,-2),且2|$\overrightarrow{AD}$|=3|$\overrightarrow{BD}$|,若點D在線段AB上,求點D的坐標(biāo).

分析 利用平面向量的坐標(biāo)運算和向量相等,列出方程即可求出結(jié)果.

解答 解:設(shè)D(x,y),∴$\overrightarrow{AD}$=(x+1,y-2),$\overrightarrow{BD}$=(x,y+2);
又∵2|$\overrightarrow{AD}$|=3|$\overrightarrow{BD}$|,點D在線段AB上,
∴$\overrightarrow{AD}$=-$\frac{3}{2}$$\overrightarrow{BD}$,如圖所示;
即$\left\{\begin{array}{l}{x+1=-\frac{3}{2}x}\\{y-2=-\frac{3}{2}(y+2)}\end{array}\right.$,
解得x=-$\frac{2}{5}$,y=-$\frac{2}{5}$;
∴D點得坐標(biāo)為(-$\frac{2}{5}$,-$\frac{2}{5}$).

點評 本題考查了平面向量的坐標(biāo)表示與運算問題,熟練掌握向量運算和向量相等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x∈(0,$\frac{π}{2}$],則下列命題:(1)x≥sinx;(2)sinx≥xcosx;(3)y=$\frac{sinx}{x}$是單調(diào)減函數(shù);(4)若sinkx≥ksinx恒成立,則正數(shù)k的取值范圍是0<k≤1;其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,M,N分別為PD,PC上的點,且$\frac{PM}{MD}$=$\frac{PN}{NC}$,求證:MN∥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn=3n-2,判斷數(shù)列{an}是否是等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2x+x2,則f(1)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{3x}{2x+1}$,數(shù)列{an}的首項a1=t>0,且an+1=f(an),n∈N*
(1)若t=$\frac{3}{5}$,證明:{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列并求出{an}的通項公式;
(2)若an+1>an對一切n∈N*都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)x,y為實數(shù),若4x2+2xy+3y2=1,則2x-y的最大值和最小值,并說明取得最值時的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}滿足:2a1+22a2+23a3+…+2nan=(n+1)2(n∈N*),則數(shù)列{an}的前n項和為 Sn=$\frac{11}{2}$-$\frac{2n+5}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的五面體中,四邊形ABCD是矩形,平面ADF⊥平面ABEF,且AB∥EF,AB=$\frac{1}{2}$EF=2$\sqrt{2}$,AF=BE=2,M是EF的中點,N在AM上.
(I)求證:DN∥平面BCE;
(Ⅱ)求證:平面ABEF⊥平面ABCD.

查看答案和解析>>

同步練習(xí)冊答案