【題目】已知AB是⊙O的直徑,直線AF交⊙O于F(不與B重合),直線EC與⊙O相切于C,交AB于E,連接AC,且∠OAC=∠CAF,求證:
(1)AF⊥EC;
(2)若AE=5,AF=2,求AC.
【答案】
(1)證明:設EC與AF交于M,連接BC,則BC⊥AC,
因為直線EC與⊙O相切于C,
所以∠ACM=∠ABC,
因為∠OAC=∠CAF,
所以∠OAC+∠ABC=∠CAF+∠ACM=90°,
所以AF⊥EC
(2)解:連接CF,則∠MCF=∠MAC,∠ECB=∠OAC,
因為∠OAC=∠CAF,
所以∠ACE=∠AFC,
所以△ACE∽△AFC,
所以 ,
所以AC2=AEAF,
因為AE=5,AF=2,
所以AC= .
【解析】(1)設EC與AF交于M,連接BC,則BC⊥AC,證明∠OAC+∠ABC=∠CAF+∠ACM=90°,即可證明AF⊥EC;(2)證明△ACE∽△AFC,可得AC2=AEAF,利用AE=5,AF=2,求AC.
科目:高中數(shù)學 來源: 題型:
【題目】某中學對男女學生是否喜愛古典音樂進行了一個調(diào)查,調(diào)查者對學校高三年級隨機抽取了100名學生,調(diào)查結果如表:
喜愛 | 不喜愛 | 總計 | |
男學生 | 60 | 80 | |
女學生 | |||
總計 | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認為“男學生和女學生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學生中以性別為依據(jù)采用分層抽樣的方式抽取10名學生,再從這10名學生中隨機抽取5名學生去某古典音樂會的現(xiàn)場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的圖象C在x=﹣ 處的切線方程是y= .
(1)若求a,b的值,并證明:當x∈(﹣∞,2]時,g(x)的圖象C上任意一點都在切線y= 上或在其下方;
(2)求證:當x∈(﹣∞,2]時,f(x)≥g(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(2)在(1)的條件下,若, , ,求的極小值;
(3)設, .若函數(shù)存在兩個零點,且滿足,問:函數(shù)在處的切線能否平行于軸?若能,求出該切線方程,若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=f(x)在上是增函數(shù),函數(shù)y=f(x+2)是偶函數(shù),則( )
A. f(1)<f(2.5)<f(3.5) B. f(3.5)<f(1)<f(2.5)
C. f(3.5)<f(2.5)<f(1) D. f(2.5)<f(1)<f(3.5)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)滿足,且當時,,對任意R,均有.
(1)求證:;
(2)求證:對任意R,恒有;
(3)求證:是R上的增函數(shù);
(4)若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com