17.不等式|2x-log2x|<2x+|log2x|成立,則( 。
A.1<x<2B.0<x<1C.x>1D.x>2

分析 由題意知x>0,不等式等價于:|2x-log2x|<|2x|+|log2x|,即2x•log2x>0,解出結(jié)果.

解答 解:根據(jù)對數(shù)的意義,可得x>0,
則不等式|2x-log2x|<2x+|log2x|等價于|2x-log2x|<|2x|+|log2x|,
即2x•log2x>0,
又由x>0,可得原不等式等價于log2x>0,
解可得x>1,
∴不等式的解集為(1,+∞),
故答案為:(1,+∞).

點評 本題考查絕對值不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.用反證法證明命題“設(shè)a,b是實數(shù),則方程x3+ax+b=0至少有一個實根”時,要做的反設(shè)是(4)(填序號)
(1)方程x3+ax+b=0恰好有兩個實根   (2)方程x3+ax+b=0至多有一個實根
(3)方程x3+ax+b=0至多有兩個實根   (4)方程x3+ax+b=0沒有實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x>0}\\{{x}^{2}+1,x≤0}\end{array}\right.$,若存在x1∈(0,+∞),x2∈(-∞,0],使得f(x1)=f(x2),則x1的最小值為( 。
A.log23B.log32C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,將拋物線C1:y=$\frac{1}{2}$x2+2x沿x軸對稱后,向右平移3個單位,再向下平移5個單位,得到拋物線C2,若拋物線C1的頂點為A,點P是拋物線C2上一點,則△POA的面積的最小值為(  )
A.3B.3.5C.4D.4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|等于( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.12D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)Z=i(1-i),則復(fù)數(shù)Z的共軛復(fù)數(shù)為1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)U=R,A={x|x<1},B={x|x≥m},若∁UA⊆B,則實數(shù)m的范圍是m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,動點P,Q從點A(3,0)出發(fā)繞⊙O作圓周運動,若點M按逆時針方向每秒鐘轉(zhuǎn)$\frac{π}{3}$rad,點N按順時針方向每秒鐘轉(zhuǎn)$\frac{π}{6}$rad.則當(dāng)M、N第一次相遇時,點M轉(zhuǎn)過的弧長為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知奇函數(shù)f(x)滿足f(x+2)=f(x-2),當(dāng)x∈(0,1)時,f(x)=3x,則f(log354)=-$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案