A. | 向左平移$\frac{π}{6}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向右平移$\frac{π}{12}$個(gè)單位 |
分析 利用兩個(gè)向量的數(shù)量積公式,三角恒等變換,化簡函數(shù)f(x)的解析式,再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答 解:函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$=2cos2x•cos2x-2sin2x•sin2x
=2(cos2x+sin2x)•(cos2x-sin2x)=2cos2x=2sin(2x+$\frac{π}{2}$)=2sin2(x+$\frac{π}{4}$),
∴要得到y(tǒng)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$)=2sin2(x+$\frac{π}{12}$)的圖象,
只需要將函數(shù)y=f(x)=2sin(2x+$\frac{π}{2}$)的圖象向右平移$\frac{π}{4}$-$\frac{π}{12}$=$\frac{π}{6}$個(gè)單位即可,
故選:B.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式,三角恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2$\sqrt{3}$-4,-2$\sqrt{3}$+4] | B. | (-∞,-2$\sqrt{3}$-4]∪[-2$\sqrt{3}$+4,+∞) | ||
C. | [-2$\sqrt{3}$+4,+∞) | D. | (-∞,-$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com