【題目】已知, , .
(1)當(dāng)時(shí),試比較與的大小關(guān)系;
(2)猜想與的大小關(guān)系,并給出證明.
【答案】21.解:(1) 當(dāng)時(shí), , ,所以;
當(dāng)時(shí), , ,所以;
當(dāng)時(shí), , ,所以.………3分
(2)由(1),猜想,下面用數(shù)學(xué)歸納法給出證明:
①當(dāng)時(shí),不等式顯然成立.
②假設(shè)當(dāng)時(shí)不等式成立,即,....6分
那么,當(dāng)時(shí),,
因?yàn)?/span>,
所以.
由①、②可知,對(duì)一切,都有成立.………………12分
【解析】試題分析:(1)分別計(jì)算,在比較大。2)由(1)猜想.用數(shù)學(xué)歸納法證明.
試題解析:(1)當(dāng)時(shí), ,所以;
當(dāng)時(shí), ,所以;
當(dāng)時(shí), ,所以.
(2)由(1)猜想,下面用數(shù)學(xué)歸納法給出證明:
當(dāng)時(shí),不等式顯然成立.
假設(shè)當(dāng)時(shí)不等式成立,即,
那么當(dāng)時(shí), ,
因?yàn)?/span>,
所以,
綜上可得,對(duì)一切,都有成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,,若且,數(shù)列的前項(xiàng)和為,且滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式及數(shù)列的前項(xiàng)和;
(Ⅱ)是否存在非零實(shí)數(shù),使得數(shù)列為等比數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)都有成立,試求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定圓,定直線,過的一條動(dòng)直線與直線相交于,與圓相交于,兩點(diǎn),
(1)當(dāng)與垂直時(shí),求出點(diǎn)的坐標(biāo),并證明:過圓心;
(2)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)好聲音( )》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強(qiáng)力打造的大型勵(lì)志專業(yè)音樂評(píng)論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對(duì)歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊(duì)中接受指導(dǎo)訓(xùn)練.已知某期《中國(guó)好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:
導(dǎo)師轉(zhuǎn)身人數(shù)(人) | 4 | 3 | 2 | 1 |
獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人) | 1 | 2 | 2 | 1 |
現(xiàn)從這6位選手中隨機(jī)抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.
(1)求選出的兩人導(dǎo)師為其轉(zhuǎn)身的人數(shù)和為4的概率;
(2)記選出的2人導(dǎo)師為其轉(zhuǎn)身的人數(shù)之和為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),( 為實(shí)數(shù)),
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極值;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直.
注:為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解防震知識(shí)在中學(xué)生中的普及情況,某地震部門命制了一份滿分為10分的問卷到紅星中學(xué)做問卷調(diào)查.該校甲、乙兩個(gè)班各被隨機(jī)抽取名學(xué)生接受問卷調(diào)查,甲班名學(xué)生得分為5,8,9,9,9乙班5名學(xué)生得分為6,7,8,9,10.
(Ⅰ)請(qǐng)你估計(jì)甲乙兩個(gè)班中,哪個(gè)班的問卷得分更穩(wěn)定一些;
(Ⅱ)如果把乙班5名學(xué)生的得分看成一個(gè)總體,并用簡(jiǎn)單隨機(jī)抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不小于1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知圓的圓心在直線上,且該圓存在兩點(diǎn)關(guān)于直線對(duì)稱,又圓與直線相切,過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),是的中點(diǎn),直線與相交于點(diǎn).
(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com