(本題滿分12分)
已知函數(shù).
(1)當(dāng)時,求證:函數(shù)在上單調(diào)遞增;
(2)若函數(shù)有三個零點(diǎn),求的值;
(3)若存在,使得,試求的取值范圍。
(1)證明:,由于所以故函數(shù)在上單調(diào)遞增(2)(3)
解析試題分析:(1)
由于,故當(dāng)時,,所以,
故函數(shù)在上單調(diào)遞增-----------------------------------4分
(2)當(dāng)時,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/5/bgi3c2.png" style="vertical-align:middle;" />,且在R上單調(diào)遞增,
故有唯一解
所以的變化情況如下表所示:
又函數(shù)有三個零點(diǎn),所以方程有三個根,x 0 - 0 + 遞減 極小值 遞增
而,所以,解得 -----------8分
(3)因?yàn)榇嬖?img src="http://thumb.zyjl.cn/pic5/tikupic/6c/3/1a2xp4.png" style="vertical-align:middle;" />,使得,
所以當(dāng)時,
由(Ⅱ)知,在上遞減,在上遞增,
所以當(dāng)時,,
而,
記,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/7/18cav4.png" style="vertical-align:middle;" />(當(dāng)時取等號),
所以在上單調(diào)遞增,而,
所以當(dāng)時,;當(dāng)時,,
也就是當(dāng)時,;當(dāng)時,
①當(dāng)時,由
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分為12分)
已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)且
(Ⅰ)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)設(shè)函數(shù).
⑴ 求的極值點(diǎn);
⑵ 若關(guān)于的方程有3個不同實(shí)根,求實(shí)數(shù)a的取值范圍.
⑶ 已知當(dāng)恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),當(dāng)時,;當(dāng)()時,.
(1)求在[0,1]內(nèi)的值域;
(2)為何值時,不等式在[1,4]上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)過曲線C:外的點(diǎn)A(1,0)作曲線C的切線恰有兩條,
(Ⅰ)求滿足的等量關(guān)系;
(Ⅱ)若存在,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù)f(x)=x2+ex-xex.(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時,不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com