19.若函數(shù)f(x)是偶函數(shù),且在(-∞,0]上是增函數(shù),又f(2)=0,則xf(x)>0的解集是( 。
A.(-2,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0]∪(2,+∞)

分析 根據(jù)函數(shù)的奇偶性、單調(diào)性畫出函數(shù)f(x)的示意圖,將不等式等價轉(zhuǎn)化,由圖象求出不等式解集.

解答 解:∵偶函數(shù)f(x)在(-∞,0]上為增函數(shù),又f(-2)=0,
∴函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(-2)=f(2)=0,
畫出函數(shù)f(x)的示意圖如圖所示:
∵不等式xf(x)>0等價為$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
∴由圖得,0<x<2或x<-2,
∴不等式的解集是(-∞,-2)∪(0,2),
故選:B.

點評 本題考查函數(shù)的奇偶性、單調(diào)性的綜合應(yīng)用,不等式的等價轉(zhuǎn)化,考查數(shù)形結(jié)合思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{x}$+lg(1-2x)定義域為{x|x<$\frac{1}{2}$且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知全集U=R,集合A={x|-2<x<5},B={x|-1≤x-1≤2}.
(1)求A∪B,A∩B
(2)求A∪(∁UB),A∩(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x3+ax2-9x+3(a<0),且曲線y=f(x)斜率最小的切線與直線12x+y=6平行.試求:
(1)a的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,PB=BC,PA=AB=1.
(1)求證:PC⊥平面BDE;
(2)求三棱錐E-BCD的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.化簡或求值
(1)(2a${\;}^{\frac{1}{2}}}$b${\;}^{\frac{1}{3}}}$)(a${\;}^{\frac{2}{3}}}$b${\;}^{\frac{1}{2}}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}}$b${\;}^{\frac{5}{6}}}$);
(2)($\frac{9}{16}$)${\;}^{\frac{1}{2}}}$+10lg9-2lg2+ln$\root{4}{e^3}$-log98•log4$\root{3}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=(m2-m-1)x3為冪函數(shù),則m的值為( 。
A.1B.-1C.-1或2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法錯誤的是( 。
A.“m=-2”是“直線mx+(m-1)y-1=0與直線3x+my+2=0垂直”的充分不必要條件
B.已知a∈R,則“a<1”是“|x-2|+|x|>a”恒成立的必要不充分條件
C.設(shè)p,q是兩個命題,若¬(p∧q)是假命題,則p,q均為真命題
D.命題p:“?x∈R,使得x2+x+1<0”,則¬p:“?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上一點P到焦點F1的距離為2,則點P到另一個焦點F2的距離為( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案