A. | (-2,2) | B. | (-∞,-2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0]∪(2,+∞) |
分析 根據(jù)函數(shù)的奇偶性、單調(diào)性畫出函數(shù)f(x)的示意圖,將不等式等價轉(zhuǎn)化,由圖象求出不等式解集.
解答 解:∵偶函數(shù)f(x)在(-∞,0]上為增函數(shù),又f(-2)=0,
∴函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(-2)=f(2)=0,
畫出函數(shù)f(x)的示意圖如圖所示:
∵不等式xf(x)>0等價為$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
∴由圖得,0<x<2或x<-2,
∴不等式的解集是(-∞,-2)∪(0,2),
故選:B.
點評 本題考查函數(shù)的奇偶性、單調(diào)性的綜合應(yīng)用,不等式的等價轉(zhuǎn)化,考查數(shù)形結(jié)合思想.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -1或2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “m=-2”是“直線mx+(m-1)y-1=0與直線3x+my+2=0垂直”的充分不必要條件 | |
B. | 已知a∈R,則“a<1”是“|x-2|+|x|>a”恒成立的必要不充分條件 | |
C. | 設(shè)p,q是兩個命題,若¬(p∧q)是假命題,則p,q均為真命題 | |
D. | 命題p:“?x∈R,使得x2+x+1<0”,則¬p:“?x∈R,均有x2+x+1≥0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com