【題目】下列說法錯誤的是(

A.若樣本的平均數(shù)為5,標準差為1,則樣本的平均數(shù)為11,標準差為2

B.身高和體重具有相關(guān)關(guān)系

C.現(xiàn)有高一學生30名,高二學生40名,高三學生30名,若按分層抽樣從中抽取20名學生,則抽取高三學生6

D.兩個變量間的線性相關(guān)性越強,則相關(guān)系數(shù)的值越大

【答案】D

【解析】

利用平均數(shù)和方差的定義,根據(jù)線性回歸的有關(guān)知識和分層抽樣原理,即可判斷出答案.

對于A:若樣本的平均數(shù)為5,標準差為1,

則樣本的平均數(shù)2×5+1=11,標準差為2×1=2,

故正確

對于B:身高和體重具有相關(guān)關(guān)系,故正確

對于C:高三學生占總?cè)藬?shù)的比例為:

所以抽取20名學生中高三學生有名,故正確

對于D:兩個變量間的線性相關(guān)性越強,應是相關(guān)系數(shù)的絕對值越大,故錯誤

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為函數(shù)的導函數(shù).

(1),函數(shù)處的切線方程為,求a、的值;

(2)若曲線上存在兩條互相平行的切線,其傾斜角為銳角,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)無窮數(shù)列的前項和為,已知

(1)求的值;

(2)求數(shù)列的通項公式;

(3)是否存在數(shù)列的一個無窮子數(shù)列,使對一切均成立?若存在,請寫出數(shù)列的所有通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足;數(shù)列的前項和為,且滿足,,

(1)求數(shù)列的通項公式;

(2)求數(shù)列的通項公式;

(3)是否存在正整數(shù),使得恰為數(shù)列中的一項?若存在,求滿足要求的那幾項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(  )

A. 命題“x∈R,使得”的否定是:“x∈R,”.

B. 為真命題”是“為真命題”的必要不充分條件.

C. ,“”是“”的必要不充分條件.

D. 命題p:“”,則﹁p是真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了提高職工的健身意識,鼓勵大家加入健步運動,要求200名職工每天晚上9:30上傳手機計步截圖,對于步數(shù)超過10000的予以獎勵.1為甲乙兩名職工在某一星期內(nèi)的運動步數(shù)統(tǒng)計圖,圖2為根據(jù)這星期內(nèi)某一天全體職工的運動步數(shù)做出的頻率分布直方圖.

1)在這一周內(nèi)任選兩天檢查,求甲乙兩人兩天全部獲獎的概率;

2)請根據(jù)頻率分布直方圖,求出該天運動步數(shù)不少于15000的人數(shù),并估計全體職工在該天的平均步數(shù);

3)如果當天甲的排名為第130名,乙的排名為第40名,試判斷做出的是星期幾的頻率分布直方圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結(jié)論中正確的個數(shù)是

(1)對于命題使得,則都有;

(2)已知,則

(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;

(4)“”是“”的充分不必要條件.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,其焦點與雙曲線的焦點重合,且橢圓的短軸的兩個端點與其一個焦點構(gòu)成正三角形.

(1)求橢圓的方程;

(2)過雙曲線的右頂點作直線與橢圓交于不同的兩點.設(shè),當為定值時,求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù), ,對于給定的非零實數(shù),總存在非零常數(shù),使得定義域內(nèi)的任意實數(shù),都有恒成立,此時的類周期,函數(shù)上的級類周期函數(shù).若函數(shù)是定義在區(qū)間內(nèi)的2級類周期函數(shù),且,當時, 函數(shù).若, ,使成立,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

同步練習冊答案