【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其焦點(diǎn)與雙曲線的焦點(diǎn)重合,且橢圓的短軸的兩個(gè)端點(diǎn)與其一個(gè)焦點(diǎn)構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過(guò)雙曲線的右頂點(diǎn)作直線與橢圓交于不同的兩點(diǎn).設(shè),當(dāng)為定值時(shí),求的值;
【答案】(1) ;(2).
【解析】
(1)設(shè)方程為,確定,利用橢圓的短軸的兩個(gè)端點(diǎn)與構(gòu)成正三角形,所以,進(jìn)而求得的值,即可得到答案.
(2)設(shè)的方程為代入橢圓的方程,利用根與系數(shù)的關(guān)系,結(jié)合向量的數(shù)量積公式,化簡(jiǎn),即可得到結(jié)論.
(1)由題意得橢圓的焦點(diǎn)在軸上,設(shè)方程為,
其左右焦點(diǎn)為,,所以,
又因?yàn)闄E圓的短軸的兩個(gè)端點(diǎn)與構(gòu)成正三角形,所以
又因?yàn)?/span>,所以.
所以橢圓的方程為.
(2)①雙曲線右頂點(diǎn)為.
當(dāng)直線的斜率存在時(shí),設(shè)的方程為
由得
設(shè)直線與橢圓交點(diǎn),,
則,,
則,,
所以
當(dāng),即時(shí)為定值.
當(dāng)直線的斜率不存在時(shí),直線的方程為
由得,不妨設(shè),,由可得.
,,所以
綜上所述當(dāng)時(shí)為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓的左、右焦點(diǎn)分別為、,為上的動(dòng)點(diǎn).
(1)若,設(shè)點(diǎn)的橫坐標(biāo)為,試用解析式將表示成的函數(shù);
(2)試根據(jù)的不同取值,討論滿足為等腰銳角三角形的點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.若樣本的平均數(shù)為5,標(biāo)準(zhǔn)差為1,則樣本的平均數(shù)為11,標(biāo)準(zhǔn)差為2
B.身高和體重具有相關(guān)關(guān)系
C.現(xiàn)有高一學(xué)生30名,高二學(xué)生40名,高三學(xué)生30名,若按分層抽樣從中抽取20名學(xué)生,則抽取高三學(xué)生6名
D.兩個(gè)變量間的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下面類比推理:
①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;
②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;
④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.
其中結(jié)論正確的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)有獎(jiǎng)銷售中,購(gòu)滿100元商品得1張獎(jiǎng)券,多購(gòu)多得.1 000張獎(jiǎng)券為一個(gè)開(kāi)獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A,B,C,求:
(1)P(A),P(B),P(C).
(2)1張獎(jiǎng)券的中獎(jiǎng)概率.
(3)1張獎(jiǎng)券不中特等獎(jiǎng),且不中一等獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個(gè)焦點(diǎn)與1個(gè)短軸端點(diǎn)為頂點(diǎn)的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過(guò)橢圓的右焦點(diǎn)F,且與橢圓交與A,B兩點(diǎn),以線段AB為直徑的圓截直線x=1所得的弦的長(zhǎng)度為,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)若函數(shù)在為增函數(shù),求實(shí)數(shù)的值;
(2)若函數(shù)為偶函數(shù),對(duì)于任意,任意,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某校高二學(xué)生的身高是否與性別有關(guān),隨機(jī)調(diào)查該校64名高二學(xué)生,得到2×2列聯(lián)表如表:
男生 | 女生 | 總計(jì) | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計(jì) | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“身高與性別無(wú)關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“身高與性別有關(guān)”
C.有99.9%的把握認(rèn)為“身高與性別無(wú)關(guān)”
D.有99.9%的把握認(rèn)為“身高與性別有關(guān)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com