16.已知點(diǎn)P是拋物線y2=4x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,A(4,4$\sqrt{10}}$),則|PA|+|PM|的最小值是12.

分析 先根據(jù)拋物線的方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn)推斷出|PA|=|PH|,進(jìn)而表示出|PM|,問題轉(zhuǎn)化為求PF|+|PA|的最小值,由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|≥|FA|,當(dāng)且僅當(dāng)A,P,F(xiàn)共線時(shí),|PF|+|PA|可取得最小值,進(jìn)而求得|FA|,則|PA|+|PM|的最小值可得.

解答 解:依題意可知焦點(diǎn)F(1,0),準(zhǔn)線 x=-1,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH|.
|PM|=|PH|-1=|PF|-1,
|PM|+|PA|=|PF|+|PA|-1,我們只有求出|PF|+|PA|最小值即可.
由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|≥|FA|,
當(dāng)且僅當(dāng)A,P,F(xiàn)共線時(shí),|PF|+|PA|可取得最小值,可得|FA|=$\sqrt{9+160}$=13.
則所求為|PM|+|PA|=13-1=12.
故答案為:12.

點(diǎn)評(píng) 本題主要考查了拋物線的簡(jiǎn)單性質(zhì).考查了考生分析問題的能力,數(shù)形結(jié)合的思想的運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x+asinx.
(Ⅰ) 若函數(shù)f(x)在$x=\frac{2π}{3}$處有極值,求f(x)在[0,π]上的最小值;
(Ⅱ)若f(x)在(-∞,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)x,y為實(shí)數(shù),且$\frac{x}{1-i}$+$\frac{y}{1-2i}$=$\frac{5}{1-3i}$,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.3名教練員隨機(jī)從3男3女共6名運(yùn)動(dòng)員中各帶2名參加乒乓球比賽,3名教練員恰好都能把運(yùn)動(dòng)員組成混雙的概率為(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$\vec a$=(1,1),$\vec b$=(1,-1),則向量3$\vec a-2\vec b$=( 。
A.(1,5)B.(5,1)C.(5,5)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$-lnx.
(1)若a>$\frac{1}{2}$,討論函數(shù)的單調(diào)性;
(2)若方程f(x)=ax有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)x∈(0,2π),則函數(shù)y=$\frac{2si{n}^{2}x+1}{sin2x}$的值域?yàn)閇$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知F1(-4,0),F(xiàn)2(4,0),點(diǎn)M為OF2:(x-4)2+y2=100上任意一點(diǎn),F(xiàn)1M的垂直平分線交MF2于點(diǎn)P.
(1)求P點(diǎn)的軌跡方程;
(2)設(shè)P到F1、F2的距離分別為d1、d2,求2d12+d22的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.?dāng)?shù)列{an}中,a1=1,a2n+an=n,a2n+1-an=1,則{an}前29項(xiàng)和為120.

查看答案和解析>>

同步練習(xí)冊(cè)答案