12.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}1-{x^2},x≤1\\{x^2}+x-2,x>1\end{array}$,則f(-1)=0.

分析 利用函數(shù)性質(zhì)直接求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}1-{x^2},x≤1\\{x^2}+x-2,x>1\end{array}$,
∴f(-1)=1-(-1)2=1-1=0.
故答案為:0.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知 f(x)是奇函數(shù),當(dāng) x>0 時,f(x)=x3-x,則 f(-2)=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)為f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示,若兩個正數(shù)a、b滿足f(2a+b)>1,則$\frac{b+1}{a+1}$的取值范圍是(  )
A.($\frac{1}{5}$,$\frac{1}{3}$)B.(-∞,3)C.(-∞,$\frac{1}{3}$)D.($\frac{1}{3}$,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖正方形ABCD中,O為中心,PO⊥面ABCD,E是PC中點,求證:
(1)PA∥平面BDE;
(2)面PAC⊥面BDE.
(3)若PA=PB=PC=PD=AB,求二面角P-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)向量$\overrightarrow{α}$=(1,cos2θ-sin2θ),$\overrightarrow$=(2,1),$\overrightarrow{c}$=($4cos(\frac{π}{2}-θ)$,1),$\overrightarrowdibyt6a$=($\frac{1}{2}cos(\frac{3π}{2}+θ),1$)其中$θ∈(0,\frac{π}{4})$.
(1)求$\overrightarrow{α}•\overrightarrow-\overrightarrow{c}•\overrightarrowmandagx$的取值范圍.
(2)若函數(shù)f(x)=|x-1|,比較f($\overrightarrow{α}•\overrightarrow$)與f($\overrightarrow{c}•\overrightarrowedfilcp$)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=2sin(2x+$\frac{π}{6}$),將f(x)圖象上每個點的橫坐標(biāo)縮短為原來的一半之后成為函數(shù)y=g(x),則g(x)的圖象的一條對稱軸方程為(  )
A.x=$\frac{π}{24}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{2}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=mx2-mx-1(m≠0),若對于x∈[1,3],f(x)<-m+5恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|1≤x<5},B={x|-a<x≤a+3}
(1)若a=1,U=R,求∁UA∩B;
(2)若B∩A=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將參加夏令營的600名學(xué)生編號為:001,002,…,600,采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,且隨機抽得的號碼為003.這600名學(xué)生分住在三個營區(qū),從001到240在第一營區(qū),從241到496為第二個營區(qū),從497到600為第三營區(qū),則第二營區(qū)被抽中的人數(shù)為22.

查看答案和解析>>

同步練習(xí)冊答案