18.若π<α<$\frac{3π}{2}$,sin($\frac{3π}{2}$-α)+cos(2π-α)$\sqrt{\frac{1+sinα}{1-sinα}}$+1=$\frac{7}{5}$,則sinα-cosα=( 。
A.$\frac{1}{5}$B.±$\frac{1}{5}$C.$\frac{7}{5}$D.±$\frac{7}{5}$

分析 利用誘導(dǎo)公式化簡(jiǎn)函數(shù)的表達(dá)式,然后求解即可.

解答 解:π<α<$\frac{3π}{2}$,sin($\frac{3π}{2}$-α)+cos(2π-α)$\sqrt{\frac{1+sinα}{1-sinα}}$+1=$\frac{7}{5}$,
可得:-cosα+cosα$\frac{1+sinα}{-cosα}$+1=$\frac{7}{5}$,即sinα+cosα=$-\frac{7}{5}$.
sin2α+cos2α=1,π<α<$\frac{3π}{2}$,解得sinα=-$\frac{4}{5}$,cosα=$-\frac{3}{5}$,或sinα=-$\frac{3}{5}$,cosα=$-\frac{4}{5}$,
sinα-cosα=$±\frac{1}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知命題p:“a>b>0”是“$\frac{1}{a}<\frac{1}$”成立的必要不充分條件;
命題q:若函數(shù)y=f(x-1)為偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,
則下列命題為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2acosB=ccosB+bcosC
(1)求角B的大小;
(2)設(shè)向量$\overrightarrow m$=(cosA,cos2A),$\overrightarrow n$=(12,-5),邊長(zhǎng)a=4,求當(dāng)$\overrightarrow m•\overrightarrow n$取最大值時(shí),三角形的面積S△ABC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.記數(shù)列{an}的前n項(xiàng)和為Sn,滿足2an+1+Sn-2=0(n∈N*),且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若{Sn+λ•n+$\frac{λ}{{2}^{n}}$}為等差數(shù)列,求出λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=3•2x-2-x
(1)求函數(shù)f(x)在R上的解析式;
(2)若f(mx2+1)+f(3x-2x2)≥0對(duì)x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在三棱柱ABC-A1B1C1中,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{B{B}_{1}}$=$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{c}$,則$\overrightarrow{B{C}_{1}}$=$\overrightarrow{c}$$-\overrightarrow{a}$+$\overrightarrow$.(用向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知A(x1,y1).B(x2,y2),P是直線上一點(diǎn),$\frac{AP}{PB}$=2,則P點(diǎn)坐標(biāo)為($\frac{{x}_{1}+{2x}_{2}}{3}$,$\frac{{y}_{1}+{2y}_{2}}{3}$)或(2x2-x1,2y2-y1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,若cos2B+3cos(A+C)+2=0,則sinB的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合U=Z,S={1,2,3,4,5},T={1,3,5,7,9},則圖中陰影部分表示的集合是( 。
A.{2,4}B.{7,9}C.{1,3,5}D.{1,2,3,4,5}

查看答案和解析>>

同步練習(xí)冊(cè)答案