規(guī)定函數(shù)y=f(x)圖象上的點到坐標原點距離的最小值叫做函數(shù)y=f(x)的“中心距離”,給出以下四個命題:
①函數(shù)y=
1
x
的“中心距離”大于1;
②函數(shù)y=
-x2-4x+5
的“中心距離”大于1;
③若函數(shù)y=f(x)(x∈R)與y=g(x)(x∈R)的“中心距離”相等,則函數(shù)h(x)=f(x)-g(x)至少有一個零點.
以上命題是真命題的序號是
 
考點:進行簡單的合情推理
專題:推理和證明
分析:①②利用新定義,計算函數(shù)y=f(x)圖象上的點到坐標原點距離的最小值,即可判定,③取特例可判斷真假.
解答: 解:①函數(shù)y=
1
x
圖象上的點到原點距離d=
x2+
1
x2
2
>1,即函數(shù)y=
1
x
的“中心距離”大于1,正確;
②函數(shù)y=
-x2-4x+5
的定義域為:[-5,1],其圖象上的點到原點距離d=
x2+(-x2-4x+5)
=
-4x+5
≥1,錯誤;
③取函數(shù)y=f(x)=x2+1,y=g(x)=-x2-1,函數(shù)h(x)=f(x)-g(x)=2x2+2,沒有零點,錯誤.
故正確命題的序號只有:①,
故答案為:①
點評:本題考查新定義,考查距離的計算,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知tanα=3,求sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD兩鄰邊長分別為AB=6,AD=3,以A為圓心,5為半徑畫圓交AB于E,交CD于F,定義點集I={P|AP≤5}
(1)若在矩形ABCD的四條邊上隨機取一點P,求P∈I的概率;
(2)若在矩形ABCD內(nèi)隨機取一點P,通過模擬方法求的P∉I的概率為
2
9
,試估計扇形AEF的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(lnx,1-alnx)
,
n
=(x,f(x))
m
n
(a為常數(shù)).
(Ⅰ)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實數(shù)a的最小值;
(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)的焦點F與雙曲線x2-
y2
3
=1的右焦點重合,拋物線的準線與x軸的交點為K,點 A在拋物線上且 AK=
2
AF,則△AFK的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點為A,左焦點為F,上頂點為B,且∠BAO+∠BFO=90°(O為坐標原點),則橢圓的離心率e=( 。
A、
5
-1
2
B、
1
2
C、
3
-1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項都是正數(shù)的等比數(shù)列{an}滿足7a4+3a3=7a2+3a1+4,那么7a8+3a7的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-mx(m>0)在區(qū)間[0,2]上的最小值記為g(m)
(Ⅰ)若0<m≤4,求函數(shù)g(m)的解析式;
(Ⅱ)定義在(-∞,0)∪(0,+∞)的函數(shù)h(x)為偶函數(shù),且當x>0時,h(x)=g(x),若h(t)>h(4),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

政府為了解決老百姓買藥貴的問題,決定下調(diào)某藥品的單價,并固定每年降價的百分率為30%,那么經(jīng)過多少年,該藥從每盒800元降至200元?(lg2=0.3010,lg7=0.8451)

查看答案和解析>>

同步練習冊答案