17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,f(1)的值等于2,若f(a)+f(1)=0,則實數(shù)a的值等于-3.

分析 明確自變量所屬范圍,然后代入對應(yīng)的解析式計算即可.

解答 解:根據(jù)分段函數(shù)各段的自變量范圍,得到f(1)=21=2;
所以由f(a)+f(1)=0,得到f(a)=-2,
所以f(a)=a+1=-2,所以a=-3;
故答案為:2;-3.

點評 本題考查了函數(shù)值的計算;關(guān)鍵是明確自變量所屬范圍,然后根據(jù)對應(yīng)的解析式求值;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在三角形、四邊形、正六邊形和圓中,一定是平面圖形的有三角形、正六邊形、圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.以正十三邊形的頂點為頂點的形狀不同的三角形共有14個(說明:全都的三角形視為形狀相同)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x+1)=x2,則函數(shù)f(x)的解析式為f(x)=(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.三棱錐P-ABC的三條側(cè)棱兩兩垂直,三個側(cè)面的面積分別是$\frac{\sqrt{2}}{2}$、$\frac{\sqrt{3}}{2}$、$\frac{\sqrt{6}}{2}$,則該三棱錐的外接球的體積是( 。
A.$\frac{\sqrt{2}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.$\sqrt{6}$πD.8$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.${(\frac{1}{9})^{-1+{{log}_3}4}}+lg\frac{5}{2}+2lg2-{(\frac{1}{2})^{-1}}$的值為-$\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在R上的函數(shù)f(x)滿足$f({x+2})=\frac{1}{2}f(x)$,當(dāng)x∈[0,2)時,$f(x)=\left\{\begin{array}{l}\frac{1}{2}-2{x^2},0≤x<1\\-{2^{1-|{x-\frac{3}{2}}|}},1≤x<2\end{array}\right.$,函數(shù)g(x)=x3+3x2+m.若?s∈[-4,-2),?t∈[-4,-2),不等式f(s)-g(t)≥0成立,則實數(shù)m的取值范圍是(  )
A.(-∞,-12]B.(-∞,-4]C.(-∞,8]D.$({-∞,\frac{31}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓O:x2+y2=1,點C為直線l:2x+y-2=0上一點,若圓O存在一條弦AB垂直平分線段OC,則點C的橫坐標(biāo)的取值范圍是(0,$\frac{8}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式$\frac{ax}{x-1}<1$的解集為{x|x<b或x>3},那么a-b的值等于-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案