16.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$2{cos^2}\frac{C}{2}+cos2({A+B})-1=0$
(1)求C;
(2)若c=2,ab=4,求△ABC的周長.

分析 (1)推導(dǎo)出$2co{s}^{2}\frac{C}{2}+cos2C-1=0$,從而$co{s}^{2}\frac{C}{2}-4si{n}^{2}\frac{C}{2}co{s}^{2}\frac{C}{2}$=0,進(jìn)而sin$\frac{C}{2}$=$\frac{1}{2}$,由此能求出C.
(2)由余弦定理得a2+b2-ab=4,再由ab=4,得到a=b=2,由此能求出△ABC的周長.

解答 解:(1)∵△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,
且$2{cos^2}\frac{C}{2}+cos2({A+B})-1=0$,
∴$2co{s}^{2}\frac{C}{2}+cos2C-1=0$,
∴$2co{s}^{2}\frac{C}{2}+1-2si{n}^{2}C-1=0$,
∴$co{s}^{2}\frac{C}{2}-4si{n}^{2}\frac{C}{2}co{s}^{2}\frac{C}{2}$=0,
∵0<C<π,∴0<$\frac{C}{2}<\frac{π}{2}$,cos$\frac{C}{2}$≠0,sin$\frac{C}{2}$>0,
∴sin$\frac{C}{2}$=$\frac{1}{2}$,∴C=$\frac{π}{3}$.
(2)∵c2=a2+b2-2abcosC,
∴a2+b2-ab=4,又ab=4,
∴a=b=2,∴△ABC是等邊三角形,
故△ABC的周長為a+b+c=6.

點(diǎn)評(píng) 本題考查三角形中角的求法,考查三角形的周長的求法,考查正弦定理、余弦定理、三角函數(shù)二倍角公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在某次綜合素質(zhì)測(cè)試中,共設(shè)有60個(gè)考場(chǎng),每個(gè)考場(chǎng)30名考生.在考試結(jié)束后,為調(diào)查其測(cè)試前的培訓(xùn)輔導(dǎo)情況與測(cè)試成績(jī)的相關(guān)性,抽取每個(gè)考場(chǎng)中座位號(hào)為06的考生,統(tǒng)計(jì)了他們的成績(jī),得到如圖所示的頻率分布直方圖.問:
(1)在這個(gè)調(diào)查采樣中,采用的是什么抽樣方法?
(2)估計(jì)這次測(cè)試中優(yōu)秀(80分及以上)的人數(shù);
(3)寫出這60名考生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a7+a13=24,則S13=(  )
A.52B.78C.104D.208

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.對(duì)于函數(shù)f(x)=|sin2x|有下列命題:①函數(shù)f(x)的最小正周期是$\frac{π}{2}$;②函數(shù)f(x)圖象關(guān)于點(diǎn)(π,0)對(duì)稱;③函數(shù)f(x)圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱;④函數(shù)f(x)在[$\frac{π}{2}$,$\frac{3π}{4}$]上為減函數(shù),其中正確命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{x}{x-2}+cos\frac{π}{4}x$在[0,2)上的最大值為a,在(2,4]上的最小值為b,則a+b=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosA+a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若a+b=2,當(dāng)邊c取最小值時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.袋中有形狀、大小都相同的4個(gè)球,其中2個(gè)紅球,2個(gè)白球.從中隨機(jī)一次摸出2個(gè)球,則這2個(gè)球中至少有1個(gè)白球的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={1,2,5},B={2,4},C={x∈R|-1≤x<5},則(A∪B)∩C=( 。
A.[1,2,4,6}B.{x∈R|-1≤x≤5}C.{2}D.{1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.我州某高中從高二年級(jí)甲、乙兩個(gè)班種各選出7名學(xué)生參加2017年全國高中數(shù)學(xué)聯(lián)賽(四川初賽),他們?nèi)〉玫某煽?jī)(滿分140分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的中位數(shù)是81,乙班學(xué)生成績(jī)的平均數(shù)是86,若正實(shí)數(shù)a、b滿足:a,G,b成等差數(shù)列且x,G,y成等比數(shù)列,則$\frac{1}{a}$+$\frac{4}$的最小值為( 。
A.$\frac{4}{9}$B.2C.$\frac{9}{4}$D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案