13.從5臺甲型和4臺乙型電視機中任意取出3臺,其中至少要有甲型與乙型電視機各1臺,則不同的取法共有70種.

分析 任意取出三臺,其中至少要有甲型和乙型電視機各1臺,有兩種方法,一是甲型電視機2臺和乙型電視機1臺;二是甲型電視機1臺和乙型電視機2臺,分別求出取電視機的方法,即可求出所有的方法數(shù).

解答 解:甲型2臺與乙型電視機1臺共有4•C52=40;甲型1臺與乙型電視機2臺共有C42•5=30;不同的取法共有70種
故答案為:70.

點評 注意分類計數(shù)原理和分步計數(shù)原理都存在時,一般先分類后分步.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.如圖所示的程序框圖中,x∈[-2,2],則能輸出x的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.從3名男生和2名女生中任意推選2名選手參加辯論賽,則推選出的2名選手恰好是1男1女的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$,則角A等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知復數(shù)z滿足$\frac{z-i}{z}$=i,則z在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若復數(shù)$\frac{1+i}{1-i}$+b(b∈R)所對應的點在直線x+y=1上,則b的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知Sn為等差數(shù)列{an}的前n項和,若a3=5,S9=81,則數(shù)列{an-a4}的前n項和為( 。
A.n2-5nB.n2-6nC.n2-7nD.n2-9n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={x|x2-x-2<0},B={x|x>log2m},若A⊆B,則實數(shù)m的取值范圍是( 。
A.(0,4]B.($\frac{1}{2}$,1]C.(0,$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥3-y}\\{y≤x+1}\\{2x-y-3≤0}{\;}\end{array}\right.$,則z=4x+6y+3的取值范圍為(  )
A.[17,48]B.[17,49]C.[19,48]D.[19,49]

查看答案和解析>>

同步練習冊答案