3.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1-i)=1+i,則z2016=( 。
A.1B.-1C.iD.-i

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)的周期性即可得出.

解答 解:∵z(1-i)=1+i,
∴z(1-i)(1+i)=(1+i)(1+i),
∴z=i,
則z2016=(i4504=1,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、復(fù)數(shù)的周期性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-m|+|x-2|.
(1)當(dāng)m=1時(shí),求不等式f(x)≥3的解集;
(2)若不等式f(x)≥4-x對(duì)?x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=sin(x+1)$\frac{π}{3}$-$\sqrt{3}$cos(x+1)$\frac{π}{3}$,則f(1)+f(2)+f(3)+…+f(2011)=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若C${\;}_{10}^{2r}$=C${\;}_{10}^{9-r}$,則實(shí)數(shù)r的值為1或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,將圖(1)中的正方體截去兩個(gè)三棱錐,得到圖(2)中的幾何體,則該幾何體的側(cè)視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.把一個(gè)周長為12cm的長方形圍成一個(gè)圓柱,當(dāng)圓柱的體積最大時(shí),該圓柱的高為2cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在邊長為$5+\sqrt{2}$的正方形ABCD中,以A為圓心畫一個(gè)扇形,以O(shè)為圓心畫一個(gè)圓,M,N,K為切點(diǎn),以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個(gè)圓錐,求圓錐的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,集合M={x|log${\;}_{\frac{1}{2}}$(x-1)>-1},N={x|1<2x<4},則(∁UM)∩N=( 。
A.{0|0<x≤3}B.{x|1<x≤3}C.{x|0<x≤1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四邊形ABCD是半徑為1的半圓O的內(nèi)接矩形,其中A、D在直徑上,Q為弧CB的中點(diǎn),設(shè)∠BOQ=θ,記f(θ)=$\frac{1}{OA}$+$\frac{1}{AB}$,求f(θ)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案