14.已知f(x)=sin(x+1)$\frac{π}{3}$-$\sqrt{3}$cos(x+1)$\frac{π}{3}$,則f(1)+f(2)+f(3)+…+f(2011)=( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.0

分析 利用三用函數(shù)的性質(zhì)得f(x)=2sin$\frac{πx}{3}$,從而得到函數(shù)f(x)的周期T=6,再由f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,且2011=335×6+1,能求出f(1)+f(2)+f(3)+…+f(2011)的值.

解答 解:∵f(x)=sin(x+1)$\frac{π}{3}$-$\sqrt{3}$cos(x+1)$\frac{π}{3}$,
=sin($\frac{πx}{3}$+$\frac{π}{3}$)-$\sqrt{3}$cos($\frac{πx}{3}$+$\frac{π}{3}$)
=2sin($\frac{πx}{3}$+$\frac{π}{3}$-$\frac{π}{3}$)
=2sin$\frac{πx}{3}$,
∴函數(shù)f(x)的周期T=$\frac{2π}{\frac{π}{3}}$=6,
又f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,
且2011=335×6+1,
故f(1)+f(2)+f(3)+…+f(2011)=335×0+f(1)=f(1)=2sin$\frac{π}{3}$=$\sqrt{3}$.
故選:B.

點評 本題考查函數(shù)值的求法,是中檔題,解題時要認(rèn)真審題,注意三角函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點M(a,b)在直線3x+4y=15上,則a2+b2的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>0\\{4^x},x≤0\end{array}$,則f[f(-2)]-16f[f(4)]=(  )
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)a,b,c,d滿足$\frac{{a-3{e^a}}}=\frac{3-2c}{d-4}$=1(e是自然對數(shù)的底數(shù)),則(a-c)2+(b-d)2的最小值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A、B兩點,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若對任意x∈R,sin2x+2kcosx-2k-2<0恒成立,則實數(shù)k的取值范圍(1-$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求經(jīng)過三點A(1,4),B(-2,3),C(4,-5)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1-i)=1+i,則z2016=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)z•(1+i)=|1+$\sqrt{3}i}$|,則z=( 。
A.2-2iB.1-iC.2+2iD.1+i

查看答案和解析>>

同步練習(xí)冊答案