【題目】(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),
(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有
【答案】(1)當(dāng)時(shí),有極小值,無(wú)極大值.
(2)見(jiàn)解析.(3)見(jiàn)解析.
【解析】
試題分析:(1)由,得.
從而.
令,得駐點(diǎn).討論可知:
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
當(dāng)時(shí),有極小值,無(wú)極大值.
(2)令,則.
根據(jù),知在R上單調(diào)遞增,又,
當(dāng)時(shí),由,即得.
(3)思路一:對(duì)任意給定的正數(shù)c,取,
根據(jù).得到當(dāng)時(shí),.
思路二:令,轉(zhuǎn)化得到只需成立.
分,,應(yīng)用導(dǎo)數(shù)研究的單調(diào)性.
思路三:就①,②,加以討論.
試題解析:解法一:
(1)由,得.
又,得.
所以,.
令,得.
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
所以當(dāng)時(shí),有極小值,
且極小值為,
無(wú)極大值.
(2)令,則.
由(1)得,,即.
所以在R上單調(diào)遞增,又,
所以當(dāng)時(shí),,即.
(3)對(duì)任意給定的正數(shù)c,取,
由(2)知,當(dāng)時(shí),.
所以當(dāng)時(shí),,即.
因此,對(duì)任意給定的正數(shù)c,總存在,當(dāng)時(shí),恒有.
解法二:(1)同解法一.
(2)同解法一.
(3)令,要使不等式成立,只要成立.
而要使成立,則只需,即成立.
①若,則,易知當(dāng)時(shí),成立.
即對(duì)任意,取,當(dāng)時(shí),恒有.
②若,令,則,
所以當(dāng)時(shí),,在內(nèi)單調(diào)遞增.
取,
,
易知,,所以.
因此對(duì)任意,取,當(dāng)時(shí),恒有.
綜上,對(duì)任意給定的正數(shù)c,總存在,當(dāng)時(shí),恒有.
解法三:(1)同解法一.
(2)同解法一.
(3)①若,取,
由(2)的證明過(guò)程知,,
所以當(dāng)時(shí),有,即.
②若,
令,則,
令得.
當(dāng)時(shí),,單調(diào)遞增.
取,
,
易知,又在內(nèi)單調(diào)遞增,
所以當(dāng)時(shí),恒有,即.
綜上,對(duì)任意給定的正數(shù)c,總存在,當(dāng)時(shí),恒有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)圖象上點(diǎn)處的切線方程與直線平行(其中),.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在()上的最小值;
(Ⅲ)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)設(shè),若在上的值域?yàn)?/span>,求實(shí)數(shù)的值;
(3)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (為自然對(duì)數(shù)的底數(shù),), (,),
⑴若,.求在上的最大值的表達(dá)式;
⑵若時(shí),方程在上恰有兩個(gè)相異實(shí)根,求實(shí)根的取值范圍;
⑶若,,求使得圖像恒在圖像上方的最大正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①分類變量與的隨機(jī)變量越大,說(shuō)明“與有關(guān)系”的可信度越大.
②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為中, ,
則.正確的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(﹥﹥0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有,且當(dāng)時(shí),,又.
(1)判斷該函數(shù)的奇偶性并說(shuō)明理由;、
(2)試判斷該函數(shù)在上的單調(diào)性;
(3)求在區(qū)間的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為4的正方形,點(diǎn)為邊上任意一點(diǎn)(與點(diǎn)不重合),連接,過(guò)點(diǎn)作交于點(diǎn),且,過(guò)點(diǎn)作,交于點(diǎn),連接,設(shè).
(1)求點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)
(2)試判斷線段的長(zhǎng)度是否隨點(diǎn)的位置的變化而改變?并說(shuō)明理由.
(3)當(dāng)為何值時(shí),四邊形的面積最小.
(4)在軸正半軸上存在點(diǎn),使得是等腰三角形,請(qǐng)直接寫出不少于4個(gè)符合條件的點(diǎn)的坐標(biāo)(用含的式子表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為正常數(shù).
⑴若,且,求函數(shù)的單調(diào)增區(qū)間;
⑵在⑴中當(dāng)時(shí),函數(shù)的圖象上任意不同的兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,試證明: .
⑶若,且對(duì)任意的, ,都有,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com