【題目】已知函數(shù)圖象上點(diǎn)處的切線方程與直線平行(其中),.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù))上的最小值;

(Ⅲ)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ);(Ⅱ) ;(Ⅲ) .

【解析】試題分析:I)根據(jù)切線方程與直線平行得到切線的斜率為2,即可得到,求出函數(shù)的導(dǎo)函數(shù)把代入即可求出的值得到函數(shù)的解析式;(II)令求出的值為,由函數(shù)定義域,所以在上討論函數(shù)的增減性,分兩種情況:當(dāng)屬于得到函數(shù)的最小值為;當(dāng)時(shí),根據(jù)函數(shù)為單調(diào)增得到函數(shù)的最小值為,求出值即可;(III)把的解析式代入不等式中解出,然后令,求出時(shí)的值,然后在定義域上分區(qū)間討論函數(shù)的增減性,求出的最大值, 要大于等于的最大值即為不等數(shù)恒成立,即可求出的取值范圍.

試題解析:(Ⅰ)由點(diǎn)處的切線方程為直線平行,

得該切線斜率為2,即.

,令, ,所以.

(Ⅱ)由(Ⅰ)知,顯然時(shí), ,當(dāng)時(shí), ,

所以函數(shù)上單調(diào)遞減.當(dāng)時(shí), ,

所以函數(shù)上單調(diào)遞增.

時(shí), ;

時(shí),函數(shù)上單調(diào)遞增,

因此 ;

所以

(Ⅲ)對(duì)一切, 恒成立,

,

.

設(shè), .

,

, , 單調(diào)遞增,

, , 單調(diào)遞減, , 單調(diào)遞增,

,且 ,

所以.

因?yàn)閷?duì)一切, 恒成立,

.

故實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出四個(gè)命題

1若sin2A=sin2B,則ABC為等腰三角形;

2若sinA=cosB,則ABC為直角三角形;

3若sin2A+sin2B+sin2C<2,則ABC為鈍角三角形;

4若cosABcosBCcosCA=1,則ABC為正三角形

以上正確命題的是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線與直線平行,求的值;

(2)若,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于, 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)結(jié)論:

(1)如果的展開式中各項(xiàng)系數(shù)之和為128,則展開式中的系數(shù)是-21;

(2)用相關(guān)指數(shù)來刻畫回歸效果, 的值越大,說明模型的擬合效果越差;

(3)若上的奇函數(shù),且滿足,則的圖象關(guān)于對(duì)稱;

(4)一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為,得2分的概率為,不得分的概率為,且,已知他投籃一次得分的數(shù)學(xué)期望為2,則的最小值為;

其中正確結(jié)論的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos xsin 2x,下列結(jié)論中正確的是________(填入正確結(jié)論的序號(hào)).

①y=f(x)的圖象關(guān)于點(diǎn)(2π,0)中心對(duì)稱;

②y=f(x)的圖象關(guān)于直線x=π對(duì)稱;

③f(x)的最大值為

④f(x)既是奇函數(shù),又是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤為3500元.

(1)求每臺(tái)A型電腦和B型電腦的銷售利潤;

(2)該商店計(jì)劃一次購進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍。設(shè)購進(jìn)A掀電腦x臺(tái),這100臺(tái)電腦的銷售總利潤為y元。

①求yx的關(guān)系式;

②該商店購進(jìn)A型、B型各多少臺(tái),才能使銷售利潤最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型電腦70臺(tái)。若商店保持兩種電腦的售價(jià)不變,請(qǐng)你以上信息及(2)中的條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤最大的進(jìn)貨方案。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓1(a>b>0)的離心率e,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)AB.已知點(diǎn)A的坐標(biāo)為(a,0).若|AB|,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時(shí),

(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有

查看答案和解析>>

同步練習(xí)冊(cè)答案