3.若函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+2(x<1)}\\{lo{g}_{3}(x+2)(x≥1)}\end{array}\right.$,則f(7)+f(0)=5.

分析 利用分段函數(shù)總結(jié)求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+2(x<1)}\\{lo{g}_{3}(x+2)(x≥1)}\end{array}\right.$,
則f(7)+f(0)=log39+30+2=2+1+2=5
故答案為:5.

點(diǎn)評(píng) 本題考查函數(shù)值以及分段函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)a>1,n∈N且n≥2,求證:$\root{n}{a}$-1<$\frac{a-1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}滿(mǎn)足0<an<1,且an+1+$\frac{1}{{a}_{n+1}}$=2an+$\frac{1}{{a}_{n}}$(n∈N*).
(1)證明:an+1<an;
(2)若a1=$\frac{1}{2}$,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:$\sqrt{2n+4}$-$\frac{5}{2}$<Sn<$\sqrt{3n+4}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某人駕車(chē)遇到險(xiǎn)情而緊急制動(dòng)并以速度v(t)=30-10t(t為時(shí)間,單位:s)行駛至停止,則從開(kāi)始制動(dòng)到汽車(chē)完全停止所行駛的距離(單位:m)為( 。
A.$\frac{45}{2}$B.45C.$\frac{135}{2}$D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.當(dāng)x≥0,f(x)=x2-3x+4,f(x)為偶函數(shù),則f(x)的解析式為(  )
A.f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x+4(x<0)}\\{{x}^{2}-3x+4(x≥0)}\end{array}\right.$B.f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+4(x<0)}\\{{x}^{2}+3x+4(x≥0)}\end{array}\right.$
C.f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x-4(x<0)}\\{{x}^{2}-3x-4(x≥0)}\end{array}\right.$D.f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x-4(x<0)}\\{{x}^{2}+3x-4(x≥0)}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.直三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,點(diǎn)F是棱BC中點(diǎn),點(diǎn)E在棱CC1上,且EF⊥AB1
(Ⅰ)求證:CC1=4CE;
(Ⅱ)求二面角F-AE-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=sinx+acosx的圖象的一條對(duì)稱(chēng)軸是x=$\frac{5π}{3}$.
(Ⅰ)求出a的值;
(Ⅱ)若g(x)=asinx+cosx,求出函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.對(duì)于任意a,b∈R,直線(xiàn)l1:(2a+b)x+(a+b)y+(a-b)=0與直線(xiàn)l2:m2x+2y+n=0恒有一個(gè)相同的公共點(diǎn),問(wèn):點(diǎn)(m,n)應(yīng)在怎樣的曲線(xiàn)上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策.為了解適齡民眾對(duì)放開(kāi)生育二胎政策的態(tài)度,某市選取70后和80后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如表:
生二胎不生二胎合計(jì)
70后301545
80后451055
合計(jì)7525100
(Ⅰ)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若從該市70后公民中隨機(jī)抽取3位,記其中生二胎的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅱ)根據(jù)調(diào)查數(shù)據(jù),是否有90%以上的把握認(rèn)為“生二胎與年齡有關(guān)”,并說(shuō)明理由.
參考數(shù)據(jù):
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案