【題目】(1)六個從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?
(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?
(3)某次聯(lián)歡會要安排3個歌舞類節(jié)目、2個小品類節(jié)目和1個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?
【答案】(1)216(2)36(3)120
【解析】分析:(1)分兩種情況討論甲在最左端時,有,當(dāng)甲不在最左端時,有(種)排法,由分類計數(shù)加法原理可得結(jié)果;(2)分三步:將看成一個整體,將于剩余的2件產(chǎn)品全排列,有3個空位可選,根據(jù)分步計數(shù)乘法原理可得結(jié)果;(3)用表示歌舞類節(jié)目,小品類節(jié)目,相聲類節(jié)目,利用枚舉法可得共有種,每一種排法種的三個,兩個可以交換位置,故總的排法為種.
詳解:(1)當(dāng)甲在最左端時,有;當(dāng)甲不在最左端時,乙必須在最左端,且甲也不在最右端,有(種)排法,共計(種)排法.
(2)根據(jù)題意,分3步進行分析:
產(chǎn)品與產(chǎn)品相鄰,將看成一個整體,考慮之間的順序,有種情況,
將于剩余的2件產(chǎn)品全排列,有種情況,
產(chǎn)品與產(chǎn)品不相鄰,有3個空位可選,即有3種情況,共有種;
(3)法一:用表示歌舞類節(jié)目,小品類節(jié)目,相聲類節(jié)目,則可以枚舉出下列10種:
每一種排法種的三個,兩個可以交換位置,故總的排法為種.
法二:分兩步進行:(1)先將3個歌曲進行全排,其排法有種;(2)將小品與相聲插入將歌曲分開,若兩歌舞之間只有一個其他節(jié)目,其插法有種.若兩歌舞之間有兩個其他節(jié)目時插法有種.所以由計數(shù)原理可得節(jié)目的排法共有(種).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)f(x)=2a2x-1-1的圖象過定點(,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x(x+1),若f(a)=-2則實數(shù)a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關(guān)于直線x=2對稱;
⑤對于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f()≥
其中所有正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的標(biāo)準(zhǔn)方程為,為圓上的動點,直線的方程為,動點在直線上.
(1)求的最小值,并求此時點的坐標(biāo);
(2)若點的坐標(biāo)為,過作直線與圓交于,兩點,當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某植物園準(zhǔn)備建一個五邊形區(qū)域的盆栽館,三角形ABE為盆裁展示區(qū),沿AB、AE修建觀賞長廊,四邊形BCDE是盆栽養(yǎng)護區(qū),若BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=米。
(1)求兩區(qū)域邊界BE的長度;
(2)若區(qū)域ABE為銳角三角形,求觀賞長廊總長度AB+AE的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其圖像的一個對稱中心是將的圖像向左平移個單位長度后得到函數(shù)的圖像。
(1)求函數(shù)的解析式;
(2)若對任意當(dāng)時,都有求實數(shù)的最大值;
(3)若對任意實數(shù)在上與直線的交點個數(shù)不少于6個且不多于10個,求正實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,當(dāng)時,,設(shè)函數(shù),則與的圖象所有交點的橫坐標(biāo)之和為( ).
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知, ,其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段與線段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬在一個U形水面PABQ(∠A=∠B=90°)上修一條堤壩(E在AP上,N在BQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點E,N拉2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長度為l.
(1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達式,并寫出定義域;
(2)求l的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com