已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為f′(x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.
(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx(a≠0),
則f′(x)=2ax+b,
由于f′(x)=6x-2,得
a=3,b=-2,
所以f(x)=3x2-2x.
又因?yàn)辄c(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,
所以Sn=3n2-2n.
當(dāng)n≥2時,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.
當(dāng)n=1時,a1=S1=3×12-2=6×1-5,
所以,an=6n-5(n∈N*
(Ⅱ)由(Ⅰ)得知bn=
3
anan+1
=
3
(6n-5)(6(n+1)-5)
=
1
2
(
1
6n-5
-
1
6n+1
)

故Tn=
n
i=1
bi
=
1
2
[(1-
1
7
)+(
1
7
-
1
13
)+…+(
1
6n-5
-
1
6n+1
)]
=
1
2
(1-
1
6n+1
).
因此,要使
1
2
(1-
1
6n+1
)<
m
20
(n∈N*)成立的m,必須且僅須滿足
1
2
m
20
,即m≥10,
所以滿足要求的最小正整數(shù)m為10.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=16,數(shù)列{bn}是公差為-1的等差數(shù)列,且bn=log2an
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)在數(shù)列{bn}中,若存在正整數(shù)p,q使bp=q,bq=p(p>q),求p,q得值;
(Ⅲ)若記cn=an•bn,求數(shù)列{cn}的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{an}的通項(xiàng)公式是an=
1
n+1
+
n
,若前n項(xiàng)和為3,則項(xiàng)數(shù)n的值為( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.
(1)求{an}的通項(xiàng)公式an和前n項(xiàng)和Sn;
(2)設(shè)Cn=
5-an
2
,bn=2cn求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
2
n•(an+2)
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正項(xiàng)等比數(shù)列{an}中,a2=3,則其前3項(xiàng)的和S3的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,其中a1=
1
2
,5Sn=7an-an-1+5Sn-1(n≥2);等差數(shù)列{bn},其中b3=2,b5=6,.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=(bn+3)an,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}前三項(xiàng)的和為-3,前三項(xiàng)的積為8.
(1)求等差數(shù)列{an}的通項(xiàng)公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:等差數(shù)列{an}中,a4=14,a7=23.
(1)求an;
(2)將{an}中的第2項(xiàng),第4項(xiàng),…,第2n項(xiàng)按原來的順序排成一個新數(shù)列,求此數(shù)列的前n項(xiàng)和Gn

查看答案和解析>>

同步練習(xí)冊答案