【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,上的一點.

(Ⅰ)求證:平面平面;

(Ⅱ)如圖(1),若,求證:平面

(Ⅲ)如圖(2),若的中點,,求二面角的余弦值.

【答案】(1)見解析(2)見解析(3)

【解析】試題分析:(Ⅰ)要證面面垂直,只要證線面垂直,在直角梯形,由平面,從而證得;

(Ⅱ)連于點,連,易證得.

(Ⅲ)由(Ⅰ)知平面,就是二面角的平面角.由余弦定理即可求得.

試題解析:

(Ⅰ)證明:∵底面

.

,,

.

.

,即.

平面

∴平面平面.

(Ⅱ)證明:連于點,連,

,

.

,

.

.

平面平面,

平面.

(Ⅲ)解:由(Ⅰ)知平面,

就是二面角的平面角.

,

.

的中點,

.

.

∴二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司購買了A,B,C三種不同品牌的電動智能送風口罩.為了解三種品牌口罩的電池性能,現(xiàn)采用分層抽樣的方法,從三種品牌的口罩中抽出25臺,測試它們一次完全充電后的連續(xù)待機時長,統(tǒng)計結(jié)果如下(單位:小時):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8

(Ⅰ)已知該公司購買的C品牌電動智能送風口罩比B品牌多200臺,求該公司購買的B品牌電動智能送風口罩的數(shù)量;

(Ⅱ)從A品牌和B品牌抽出的電動智能送風口罩中,各隨機選取一臺,求A品牌待機時長高于B品牌的概率;

(Ⅲ)再從AB,C三種不同品牌的電動智能送風口罩中各隨機抽取一臺,它們的待機時長分別是a,bc(單位:小時).這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為.若,寫出a+b+c的最小值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸.那么在一個生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點的橫坐標構(gòu)成一個公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個單位,得到函數(shù)g(x)的圖象.若在區(qū)間[0,π]上隨機取一個數(shù)x,則事件“g(x)≥ ”發(fā)生的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1OF2的中點分別為B1、B2,△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學為調(diào)研學生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數(shù)據(jù),將分數(shù)以為組距分成組:,,,,,得到A餐廳分數(shù)的頻率分布直方圖,和B餐廳分數(shù)的頻數(shù)分布表:

B餐廳分數(shù)頻數(shù)分布表

分數(shù)區(qū)間

頻數(shù)

(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數(shù);

(Ⅱ)從對B餐廳評分在范圍內(nèi)的人中隨機選出2人,求2人中恰有1人評分在范圍內(nèi)的概率;

(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,前n項和為Sn , a2+a3=5,且Sn= an+ ,則S10=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設三個正實數(shù)a , b , c , 滿足 ,求證:a , b , c一定是某一個三角形的三條邊的長;

②設n個正實數(shù) a1,a2,...an 滿足不等式 (其中 ),求證: a1,a2,...an 中任何三個數(shù)都是某一個三角形的三條邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

同步練習冊答案