11.若復數(shù)2-bi(b∈R)的實部與虛部之和為零,則b的值為( 。
A.2B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-2

分析 由復數(shù)2-bi(b∈R)的實部與虛部之和為零,得2-b=0,求解即可得答案.

解答 解:由復數(shù)2-bi(b∈R)的實部與虛部之和為零,
得2-b=0,即b=2.
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)f(x)=|x-a|,a<0
(Ⅰ)若a=-2求不等式f(x)+f(2x)>2的解集
(Ⅱ)若不等式f(x)+f(2x)<$\frac{1}{2}$的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(文科)設A在平面BCD內(nèi)的射影是直角三角形BCD的斜邊BD的中點O,
AC=BC=1,CD=$\sqrt{2}$,
求(1)AC與平面BCD所成角的大;
(2)異面直線AB和CD的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1(x∈R).
(1)把f(x)化簡成f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的形式
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知f(x)=x3+x2f′(2)+2lnx,則f′(1)=( 。
A.$\frac{3}{2}$B.$-\frac{11}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.cos(-120o)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=2ln(3x)+8x,則$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$的值為( 。
A.10B.-10C.-20D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求下列定積分:
(1)$\int_1^4{\sqrt{x}}(1-\sqrt{x})dx$;
(2)$\int_1^2{\;}({2^x}+\frac{1}{x})dx$
(3)$\int_0^{\frac{Π}{3}}{\;}(sinx-sin2x)dx$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在等差數(shù)列{an}中,已知a4=-15,公差d=3,則數(shù)列{an}的前n項和Sn的最小值為-108.

查看答案和解析>>

同步練習冊答案