3.已知函數(shù)f(x)=2ln(3x)+8x,則$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$的值為(  )
A.10B.-10C.-20D.20

分析 利用導(dǎo)數(shù)的定義與運(yùn)算法則即可得出.

解答 解:函數(shù)f(x)=2ln(3x)+8x,
∴f′(x)=$\frac{2}{x}$+8,
∴f′(1)=10,
∴$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$=-2$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{-2△x}$=-2f′(1)=-20,
故選:C

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的定義與運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求圓心在直線y=-4x上,且與直線l:x+y-1=0相切于點(diǎn)P(3,-2)的圓的標(biāo)準(zhǔn)方程,并化為圓的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知-5sin2α+sin2β=3sinα,則y=sin2α+sin2β函數(shù)的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若復(fù)數(shù)2-bi(b∈R)的實(shí)部與虛部之和為零,則b的值為( 。
A.2B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.要得到$y=cos(4x-\frac{π}{3})$的圖象,只需將函數(shù)y=cos4x圖象( 。
A.向左平移$\frac{π}{12}$個(gè)單位B.向右平移$\frac{π}{12}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知橢圓$\frac{x^2}{m+1}+{y^2}=1(m>0)$的兩個(gè)焦點(diǎn)是F1,F(xiàn)2,E是直線y=x+2與橢圓的一個(gè)公共點(diǎn),當(dāng)|EF1|+|EF2|取得最小值時(shí)橢圓的離心率為(  )
A.$\frac{2}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.用適當(dāng)?shù)姆椒ㄗC明下列命題:
(1)$\sqrt{b+1}-\sqrt<\sqrt{b-1}-\sqrt{b-2}(b≥2)$
(2)設(shè)a,b,c∈(0,+∞),求證:三個(gè)數(shù)中$a+\frac{1},c+\frac{1}{a},b+\frac{1}{c}$至少有一個(gè)不小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.復(fù)數(shù)i(1+i)(i為虛數(shù)單位)的實(shí)部為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.我國(guó)古代數(shù)學(xué)家趙爽利用“勾股圈方圖”巧妙的證明了勾股定理,成就了我國(guó)古代數(shù)學(xué)的驕傲,后人稱之為“趙爽弦圖”.他是由四個(gè)全等的直角三角形和中間的一個(gè)小正方形拼成的一個(gè)大正方形,若直角三角形中較小的銳角記為θ,大正方形的面積為25,小正方形的面積為1,則$sin\frac{θ}{2}+cos\frac{θ}{2}$=$\frac{{2\sqrt{10}}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案