Loading [MathJax]/jax/output/CommonHTML/jax.js
5.將函數(shù)y=cos4x+sin2x-78(x∈R)圖象向右平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于原點(diǎn)對稱,則m的最小值為(  )
A.π8B.π6C.π4D.π3

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,求得m的最小值.

解答 解:將函數(shù)y=cos4x+sin2x-78=1+cos2x22+1cos2x2-78=cos22x4-18=1+cos4x8-18=18cos4x
的圖象向右平移m(m>0)個(gè)單位長度后,可得函數(shù)y=18cos4(x-m)=18cos(4x-4m)的圖象,
根據(jù)所得到的圖象關(guān)于原點(diǎn)對稱,可得4m=kπ+π2,即 m=kπ4+π8,k∈Z,
則m的最小值為π8
故選:A.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.隨機(jī)變量X~N(μ,σ2),F(xiàn)(x)為分布函數(shù),Y=F(x),則概率P(Y12)( �。�
A.與μ,σ有關(guān);B.與μ有關(guān),與σ無關(guān);
C.與σ有關(guān),與μ無關(guān);D.與μ,σ無關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線ax+3y-1=0與直線3x-y+2=0互相垂直,則a=( �。�
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xOy中,將點(diǎn)A(2,1)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)π4到點(diǎn)B,若直線OB的傾斜角為α,則cosα的值為1010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了增強(qiáng)消防安全意識,某中學(xué)對全體學(xué)生做了一次消防知識講座,從男生中隨機(jī)抽取50人,從女生中隨機(jī)抽取70人參加消防知識測試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:
 優(yōu)秀非優(yōu)秀總計(jì)
男生153550
女生304070
總計(jì)4575120
(Ⅰ)試判斷是否有90%的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
附:
K2=aadbc2a+bc+da+cb+d
P(K2≥k00.250.150.100.050.0250.010
k01.3232.0722.7063.8415.0246.635
(Ⅱ)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A(2,3),B(5,4),連接AB并延長至C,使得AC=3AB,求C點(diǎn)的坐標(biāo).(提示:如圖所示,OC=OA+3AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=1xex
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的零點(diǎn)和極值;
(3)若對任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-1e2成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知m≥1,當(dāng)x∈R時(shí),不等式m+cos2x<3+2sinx+2m+1恒成立,則m的取值范圍是[1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線(x+2y+a)(x2-y2)=0為平面上交于一點(diǎn)的三條直線的充要條件是( �。�
A.a=0B.a=1C.a=-1D.a∈R

查看答案和解析>>

同步練習(xí)冊答案