2.已知將函數(shù)$g(x)=sin(x+\frac{π}{3}+φ)(φ∈R)$圖象上的每一點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$后所得的圖象向右平移$\frac{π}{6}$與f(x)圖象重合,若$f(x)≤|f(\frac{π}{6})|$對x∈R恒成立,且$f(\frac{π}{2})>f(π)$,則f(x)的單調(diào)遞增區(qū)間是( 。
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$B.$[kπ,kπ+\frac{π}{2}](k∈Z)$C.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$D.$[kπ-\frac{π}{2},kπ](k∈Z)$

分析 由已知利用函數(shù)y=Asin(ωx+φ)的圖象變換可求f(x)的解析式,由若f(x)≤|f($\frac{π}{6}$)|對x∈R恒成立,結(jié)合函數(shù)最值的定義,我們易得f($\frac{π}{6}$)等于函數(shù)的最大值或最小值,由此可以確定滿足條件的初相角φ的值,結(jié)合f($\frac{π}{2}$)>f(π),易求出滿足條件的具體的φ值,然后根據(jù)正弦型函數(shù)單調(diào)區(qū)間的求法,即可得到答案.

解答 解:∵將函數(shù)$g(x)=sin(x+\frac{π}{3}+φ)(φ∈R)$圖象上的每一點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$后,所得的圖象解析式為:y=sin(2x+$\frac{π}{3}$+φ),
向右平移$\frac{π}{6}$,可得函數(shù)解析式為:y=sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$+φ]=sin(2x+φ),
∴由題意f(x)=sin(2x+φ),
∵$f(x)≤|f(\frac{π}{6})|$,對x∈R恒成立,
∴f($\frac{π}{6}$)等于函數(shù)的最大值或最小值,即2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,
∴則φ=kπ+$\frac{π}{6}$,k∈Z,
又f($\frac{π}{2}$)>f(π),即sinφ<0,
令k=-1,此時(shí)φ=-$\frac{5π}{6}$,滿足條件.
令2x-$\frac{5π}{6}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z
解得x∈[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z).
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換,考查了數(shù)形結(jié)合思想的應(yīng)用,其中根據(jù)已知條件求出滿足條件的初相角φ的值,是解答本題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)y=tan(2x+$\frac{π}{4}$)的定義域和單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.動圓M過點(diǎn)F(0,2)且與直線y=-2相切,則圓心M的軌跡方程是x2=8y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.閱讀以下程序:
INPUT  x
IF  x<0   THENy=x2-3x+5
ELSE    y=(x-1)2
END  IF
PRINT  y
END
若輸出y=9,則輸入的x值應(yīng)該是( 。
A.-1B.4 或-1C.4D.4 或-1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)試求圓(x-3)2+(y-2)2=100被點(diǎn)A(1,2)平分的弦所在的直線的方程;
(2)與x軸相切于點(diǎn)(5,0)且在y軸上截得的弦長為10的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex-ax-1(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)F(x)=f(x)-xlnx在定義域內(nèi)零點(diǎn)的個(gè)數(shù);
(3)若g(x)=ln(ex-1)-lnx,當(dāng)x∈(0,+∞)時(shí),不等式f(g(x))<f(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.不用計(jì)算器求下列各式的值.
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2;
(2)計(jì)算:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,輸出的s值為( 。
A.2B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.曲線C1的極坐標(biāo)方程為ρsin2θ=cosθ,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=3-t}\\{y=1-t}\end{array}\right.$,(t為參數(shù)),以極點(diǎn)為原點(diǎn)、極軸為x軸正半軸、相同的單位長度建立直角坐標(biāo)系,則曲線C1與曲線C2的交點(diǎn)個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊答案