13.已知x+3y=1(x>0,y>0),則xy的最大值是$\frac{1}{12}$.

分析 運(yùn)用基本不等式可得x+3y≥2$\sqrt{3xy}$,結(jié)合條件,即可得到xy的最大值.

解答 解:x+3y=1(x>0,y>0),
可得x+3y≥2$\sqrt{3xy}$,
即有1≥2$\sqrt{3xy}$,
可得xy≤$\frac{1}{12}$,
當(dāng)且僅當(dāng)x=3y=$\frac{1}{2}$時(shí),取得最大值$\frac{1}{12}$.
故答案為:$\frac{1}{12}$.

點(diǎn)評(píng) 本題考查最值的求法,注意運(yùn)用基本不等式和等號(hào)成立的條件,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知向量$\overrightarrow a$=(sinA,sinB-sinC)與$\overrightarrow b$=(sinA-$\frac{1}{2}$sinB,sinB+sinC)垂直,且c=2,則△ABC面積的最大值為$\frac{{\sqrt{15}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某人練習(xí)射擊,他脫靶的概率為0.20,命中6環(huán),7環(huán),8環(huán),9環(huán),10環(huán)的概率依次0.10,0.20,0.30,0.15,0.05,則該人射擊命中的概率為( 。
A.0.50B.0.60C.0.70D.0.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某校高三學(xué)生有3000名,在一次模擬考試中數(shù)學(xué)成績(jī)X服從正態(tài)分布N(100,σ2),已知P(80<X<120)=0.6,若學(xué)校按分層抽樣的方式從中抽取50份試卷進(jìn)行分析研究,則應(yīng)從成績(jī)不低于120分的試卷中抽( 。
A.10份B.20份C.30份D.40份

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=3ax2-2(a+b)x+b(0≤x≤1),其中a>0,b為任意常數(shù).
(Ⅰ)若b=$\frac{1}{2}$,f(x)=|x-$\frac{1}{2}$|在x∈[0,1]有兩個(gè)不同的解,求實(shí)數(shù)a的取值范圍.
(Ⅱ)當(dāng)b=2,|f(1)|≤2時(shí),求|f(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a,b是正數(shù),且a≠1,b≠1,求證:$\frac{{a}^{5}-1}{{a}^{4}-1}$•$\frac{^{5}-1}{^{4}-1}$>$\frac{25}{64}$(a+1)(b+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若數(shù)列{an}滿足:a1=1,an+1+an=4n.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)記{an}的前n項(xiàng)和為Sn,證明$\sum_{i=1}^{n}$$\frac{1}{9{S}_{i}-1}$<$\frac{5}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用數(shù)學(xué)歸納法證明不等式“1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n∈N*,n≥2)”時(shí),由n=k(k≥2)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是(  )
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.點(diǎn)A(m,-5)到直線l:y=-2的距離是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案