4.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sin2x+1-$\sqrt{3}$.
(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(2)當x∈[$\frac{π}{6}$,$\frac{π}{2}$]時,求函數(shù)f(x)的值域.

分析 (1)函數(shù)解析式利用二倍角的余弦函數(shù)公式化簡,整理后利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式即可求出函數(shù)f(x)的最小正周期,根據(jù)正弦函數(shù)的單調性即可確定出f(x)的單調遞增區(qū)間;
(2)由x的范圍求出這個角的范圍,利用正弦函數(shù)的值域確定出f(x)的最值.

解答 解:(1)f(x)=sin2x-$\sqrt{3}$cos2x+1=2sin(2x-$\frac{π}{3}$)+1,
∵ω=2,
∴函數(shù)f(x)最小正周期是T=π;
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2π+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
∴函數(shù)f(x)單調遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z;
(2)∵x∈[$\frac{π}{6}$,$\frac{π}{2}$]時
∴2x-$\frac{π}{3}$∈[0,$\frac{2π}{3}$],
∴f(x)=2sin(2x-$\frac{π}{3}$)+1的最小值為1,最大值為3.
故函數(shù)f(x)的值域是[1,3].

點評 此題考查了兩角和與差的正弦函數(shù)公式,函數(shù)恒成立問題,以及正弦函數(shù)的單調性,熟練掌握公式是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x∈N|1<x<log2k},集合A中至少有3個元素,則( 。
A.k>8B.k≥8C.k>16D.k≥16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.球O面上四點P、A、B、C滿足:PA、PB、PC兩兩垂直,$PA=3,PB=4,PC=5\sqrt{3}$,則球O的表面積等于100π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列函數(shù)中,在區(qū)間(-1,1)上單調遞減的函數(shù)為( 。
A.y=x2B.y=3xC.y=sinxD.y=log${\;}_{\frac{1}{2}}$(x+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若函數(shù)y=3x2+2(a-1)x+6在(-∞,1)上是減函數(shù),在(1,+∞)上是增函數(shù),則a=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知正實數(shù)a、b滿足:$\frac{1}{a}+\frac{1}=2\sqrt{ab}$.
(1)求a+b的最小值m;
(2)在(1)的條件下,若不等式|x-1|+|x-t|≥m對任意實數(shù)x恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)$f(x)=\frac{1}{2}ln(2x)+\frac{1}{2}$,數(shù)列{an}滿足:a1=1,an+1=f(an)(n∈N*).
(1)求證:$x>\frac{1}{2}$時,f(x)<x;
(2)求證:$\frac{1}{2}<{a_n}≤1$(n∈N*);
(3)求證:$\sum_{i=1}^n{({a_i}-{a_{i+1}})}•{a_{i+1}}<\frac{3}{8}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ax3-x2(a∈R)在$x=\frac{1}{3}$處取得極值.
(1)求a的值;
(2)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.$C_n^{14}=C_n^4$,則n=18.

查看答案和解析>>

同步練習冊答案