19.若函數(shù)y=3x2+2(a-1)x+6在(-∞,1)上是減函數(shù),在(1,+∞)上是增函數(shù),則a=-2.

分析 由題意可得,二次函數(shù)的圖象的對(duì)稱軸為x=$\frac{1-a}{3}$=1,由此求得實(shí)數(shù)a的值.

解答 解:∵函數(shù)y=3x2+2(a-1)x+6在(-∞,1)上是減函數(shù),在(1,+∞)上是增函數(shù),
∴此二次函數(shù)的圖象的對(duì)稱軸為x=$\frac{1-a}{3}$=1,解得 a=-2,
故答案為:-2.

點(diǎn)評(píng) 本題主要考查二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知m>0,n>0,2m+n=4,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給定兩個(gè)命題,p:對(duì)任意實(shí)數(shù)x都有ax2+ax+1>0恒成立;q:關(guān)于x的方程x2-x+a=0有實(shí)數(shù)根.如果p與q中有且僅有一個(gè)為真命題,則實(shí)數(shù)a的取值范圍為(-∞,0)∪($\frac{1}{4}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知原命題:若sinx=1,則$x=\frac{π}{2}$,則它的否命題為( 。
A.若sinx=1,則$x≠\frac{π}{2}$B.存在sinx=1,使$x≠\frac{π}{2}$
C.若sinx≠1,則$x≠\frac{π}{2}$D.若$x≠\frac{π}{2}$,則sinx≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sin2x+1-$\sqrt{3}$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{6}$,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示,向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,若$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,則(  )
A.$\overrightarrow{c}$=-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{3}{2}$$\overrightarrow$B.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$C.$\overrightarrow{c}$=-$\overrightarrow{a}$+2$\overrightarrow$D.$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB|}}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ≠0),則點(diǎn)P所在直線過△ABC的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.△ABC中,a=1,A=60°,$c=\frac{{\sqrt{3}}}{3}$,則角C=30°

查看答案和解析>>

同步練習(xí)冊(cè)答案