【題目】已知函數(shù)f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).
(1)若a=﹣1,求方程f(x)=1的解集;
(2)若 ,試判斷函數(shù)y=f(x)在R上的零點(diǎn)個(gè)數(shù),并求此時(shí)y=f(x)所有零點(diǎn)之和的取值范圍.

【答案】
(1)解:方法一:

當(dāng)a=﹣1時(shí),

由f(x)=1得

解得 x=0,1,﹣2,即解集為{0,1,﹣2}.

方法二:當(dāng)a=﹣1時(shí),由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0

∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2

即解集為{0,1,﹣2}.


(2)解:

當(dāng)x≥a時(shí),令x2﹣(a+2)x﹣a=0,∵ ,

∴△=a2+8a+4=(a+4)2﹣12>0

先判斷2﹣a,與 大。

,即a<x1<x2,故當(dāng)x≥a時(shí),f(x)存在兩個(gè)零點(diǎn).

當(dāng)x<a時(shí),令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵ ,

∴△=a2﹣12a=(a﹣6)2﹣36>0

,

同上可判斷x3<a<x4,故x<a時(shí),f(x)存在一個(gè)零點(diǎn).

綜上可知當(dāng) 時(shí),f(x)存在三個(gè)不同零點(diǎn).

設(shè) ,易知g(a)在 上單調(diào)遞增,

故g(a)∈(0,2)∴x1+x2+x3∈(0,2)


【解析】(1)方法一:化簡(jiǎn)分段函數(shù),分段求解方程的根即可,方法二:當(dāng)a=﹣1時(shí),利用f(x)=1化簡(jiǎn)求解即可.(2)化簡(jiǎn)分段函數(shù),通過(guò)當(dāng)x≥a時(shí),當(dāng)x<a時(shí),求出函數(shù)的零點(diǎn),推出 ,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x,y)在圓x2+y2﹣6x﹣6y+14=0上
(1)求 的最大值和最小值;
(2)求x2+y2+2x+3的最大值與最小值;
(3)求x+y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 的定義域?yàn)榧螦,函數(shù)g(x)=x﹣a(0<x<4)的值域?yàn)榧螧. (Ⅰ)求集合A,B;
(Ⅱ)若集合A,B滿足A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左焦點(diǎn)F及點(diǎn)A(0,b),原點(diǎn)O到直線FA的距離為
(1)求橢圓C的離心率e;
(2)若點(diǎn)F關(guān)于直線l:2x+y=0的對(duì)稱點(diǎn)P在圓O:x2+y2=4上,求橢圓C的方程及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式(ax+2)ln(x+a)≤0對(duì)x∈(﹣a,+∞)恒成立,則a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=

(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈R,x2+2x﹣m=0;命題q:x∈R,mx2+mx+1>0.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題q為假命題,求實(shí)數(shù)m的取值范圍;
(3)若命題p∨q為真命題,且p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)古代著名的數(shù)學(xué)專著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,齊去長(zhǎng)安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問(wèn):幾日相逢?(
A.9日
B.8日
C.16日
D.12日

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 (a>0,b>0)的兩條漸近線與拋物線D:y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),雙曲線的離心率為 ,△ABO的面積為2
(1)求雙曲線C的漸近線方程;
(2)求p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案