已知函數(shù)f(x)=2sin(
1
3
x-
π
6
),x∈R.
(1)求f(0)的值;
(2)設(shè)α∈(
π
2
,
2
),β∈(π,2π),f(3α+
π
2
)=
10
13
,f(3β+2π)=
6
5
,求cos(α-β)的值.
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,三角函數(shù)的化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:(1)把x=0代入函數(shù)解析式求出值即可;
(2)由f(3α+
π
2
)=
10
13
,f(3β+2π)=
6
5
,求出sinα與cosβ的值,進(jìn)而求出cosα與sinβ的值,原式利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),把各自的值代入計(jì)算即可求出值.
解答: 解:(1)f(0)=2sin(-
π
6
)=-1;
(2)f(3α+
π
2
)=2sin[
1
3
(3α+
π
2
)-
π
6
]=sinα=
10
13
,即sinα=
5
13
,f(3β+2π)=2sin[
1
3
(3β+2π)-
π
6
]=2sin(β+
π
2
)=2cosβ=
6
5
,即cosβ=
3
5
,
∵α∈(
π
2
,
2
),β∈(π,2π),
∴cosα=-
12
13
,sinβ=-
4
5
,
則cos(α-β)=cosαcosβ+sinαsinβ=-
12
13
×
3
5
-
4
5
×
5
13
=-
56
65
點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|ax2+(a+1)x+1=0},若集合A中只有一個(gè)元素,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=
x+1
,則f(3)=( 。
A、10
B、4
C、2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知R是實(shí)數(shù)集,集合A={y|y=x2-2x+2,x∈R,-1≤x≤2},集合B={x|x∈R,
2x-7
x-3
>1}
,任取x∈A,則
x∈A∩B的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形ABC的邊長(zhǎng)為3,點(diǎn)D,、E分別是邊AB、AC上的點(diǎn),且滿足
AD
DB
=
CE
EA
=
1
2
.將△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,連接A1B、A1C.

(1)求證:A1D⊥平面BCED;
(2)求A1E與平面A1BC所成角的正弦值.
(3)在線段BC上是否存在點(diǎn)P,使直線PA1與平面A1BD所成的角為60°?若存在,求出PB的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線MN過(guò)C點(diǎn),已知AB=3米,AD=2米.
(Ⅰ)要使矩形AMPN的面積大于32平方米,則DN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(Ⅱ)當(dāng)DN的長(zhǎng)度是多少時(shí),矩形花壇AMPN的面積最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,則cos(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知線段PQ=
2
,點(diǎn)Q在x軸正半軸,點(diǎn)P在邊長(zhǎng)為1的正方形OABC第一象限內(nèi)的邊上運(yùn)動(dòng).設(shè)∠POQ=θ,記x(θ)表示點(diǎn)Q的橫坐標(biāo)關(guān)于θ的函數(shù),則x(θ)在(0,
π
2
)上的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案