【題目】如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪, 圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1).設AD=x(x≥0),DE=y,求用x表示y的函數(shù)關系式,并求函數(shù)的定義域;
(2).如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應在哪里?請予證明.
【答案】(1);(2)如果DE是水管,DE的位置在AD=AE=處,如果DE是參觀路線,則DE為AB中線或AC中線時,DE最長,證明過程詳見解析.
【解析】
試題(1)在△ADE中,利用余弦定理可得,又根據(jù)面積公式可得,消去AE后即可得到y(tǒng)與x的函數(shù)關系式,又根據(jù)可以得到x的取值范圍;(2)如果DE是水管,則問題等價于當時,求的最小值,利用基本不等式即可求得當時,y有最小值為,如果DE是參觀路線,則問題等價于問題等價于當時,求的最小值,根據(jù)函數(shù)在[1,2]上的單調(diào)性,可得當x=1或2時,y有最小值.
(1)在△ADE中,由余弦定理:①
又∵ ②
②代入①得(y>0), ∴,
由題意可知,所以函數(shù)的定義域是,
;
(2)如果DE是水管,
當且僅當,即x=時“=”成立,故DE∥BC,且DE=.
如果DE是參觀線路,記,可知函數(shù)在[1,]上遞減,在[,2]上遞增,
故 ∴y max=.即DE為AB中線或AC中線時,DE最長.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①已知集合,則“”是“”的充分不必要條件;
②“”是“”的必要不充分條件;
③“函數(shù)的最小正周期為”是“”的充要條件;
④“平面向量與的夾角是鈍角”的要條件是“”.
其中正確命題的序號是 .(把所有正確命題的序號都寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠從一批產(chǎn)品中隨機抽取20件進行檢測,如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[140,200],樣本數(shù)據(jù)分組為[140,150),[150,160),[160,170),[170,180),[180,190),[190,200].
(1)求圖中a的值;
(2)若頻率視為概率,從這批產(chǎn)品中有放回地隨機抽取3件,求至少有2件產(chǎn)品的凈重在[160,180)中的概率;
(3)若產(chǎn)品凈重在[150,190)為合格產(chǎn)品,其余為不合格產(chǎn)品,從這20件抽樣產(chǎn)品中任取2件,記X表示選到不合格產(chǎn)品的件數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求數(shù)列 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com