分析 以投影面為底面,易得正方體的高為$\sqrt{{{10}^2}-{8^2}}=6$,設(shè)長方體底面邊長分別為a,b,可得a2+b2=64,可得V=6ab,再利用基本不等式的性質(zhì)即可得出.
解答 解:以投影面為底面,易得正方體的高為$\sqrt{{{10}^2}-{8^2}}=6$,
設(shè)長方體底面邊長分別為a,b,則a2+b2=64,
∴V=6ab≤3(a2+b2)=192.當(dāng)且僅當(dāng)a=b=4$\sqrt{2}$時取等號.
故答案為:192.
點評 本題考查了空間位置關(guān)系、長方體的體積計算公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{41}}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{5}-\frac{3}{5}i$ | B. | $\frac{1}{5}+\frac{3}{5}i$ | C. | $-\frac{1}{5}+\frac{3}{5}i$ | D. | $\frac{1}{5}-\frac{3}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (-1,2) | C. | (-1,1) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (2,3) | C. | (2,4) | D. | (1,4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com