8.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)之積為Tn,且a2=8,a1•a7=4,則當(dāng)Tn最大時(shí),n的值為(  )
A.5或6B.6C.5D.4或5

分析 根據(jù)等比數(shù)列的性質(zhì)推知a1•a7=a42,結(jié)合等比數(shù)列的性質(zhì)求得首項(xiàng)和公比,進(jìn)而得到該數(shù)列的通項(xiàng)公式.由n的取值范圍來決定an的取值范圍,從而確定Tn最大值.

解答 解:設(shè)等比數(shù)列{an}的公比是q(q>0).
由a2=8,a1•a7=4,得
$\left\{\begin{array}{l}{{a}_{1}q=8}\\{{{a}_{1}}^{2}{q}^{6}=4}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=16}\\{q=\frac{1}{2}}\end{array}\right.$,
所以an=25-n
當(dāng)n=5時(shí),a5=1.
當(dāng)n>5時(shí),an<1.
當(dāng)n<5時(shí),an>1.
∴T4和T5為Tn的最大值.
故選:D.

點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì),考查了分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\frac{2-x}{x+1}$,x∈(m,n]最小值為0,則m的取值范圍是( 。
A.(1,2)B.(-1,2)C.[1,2)D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-$\frac{5}{2}$|+|x-a|,x∈R
(Ⅰ)當(dāng)a=-$\frac{1}{2}$時(shí),求不等式f(x)>4的解集;
(Ⅱ)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知平面上三個(gè)不同的單位向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow•\overrightarrow{c}$=$\frac{1}{2}$,若$\overrightarrow{e}$為平面內(nèi)的任意單位向量,則|$\overrightarrow{a}•\overrightarrow{e}$|+|2$\overrightarrow•\overrightarrow{e}$|+3|$\overrightarrow{c}•\overrightarrow{e}$|的最大值為$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={0,1,2,3,4},B={x|x=2n+1,n∈A},則A∩B等于( 。
A.{1,3,5}B.{3}C.{5,7,9}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.學(xué)校從參加高三年級(jí)期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),得到如下數(shù)學(xué)成績的頻率分布表:
分組頻數(shù)頻率
[40,50)2
[50,60)3
[60,70)0.28
[70,80)15
[80,90)12
[90,100]4
(Ⅰ)請(qǐng)?jiān)诖痤}卡上完成頻率分布表和作出頻率分布直方圖;
(Ⅱ)用樣本估計(jì)總體,若高三年級(jí)共有2000人,估計(jì)成績不及格(60分以下)的人數(shù);
(Ⅲ)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,現(xiàn)從成績[90,100]的學(xué)生中選兩位同學(xué),共同幫助成績?cè)赱40,50)中的某一位同學(xué),即成立幫扶學(xué)習(xí)小組,樣本中已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”問題:糧倉開倉收糧,有人送來米1494石,檢驗(yàn)發(fā)現(xiàn)米內(nèi)夾谷,抽樣取米一把,數(shù)得270粒內(nèi)夾谷30粒,則這批米內(nèi)夾谷約為( 。
A.17石B.166石C.387石D.1310石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=$\int_0^2{\sqrt{4-{x^2}}}$dx,則a2014(a2012+2a2014+a2016)的值為( 。
A.π2B.2C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于95為正品,小于95為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo)[85,90)[90,95)[95,100)[100,105)[105,110)
機(jī)床甲81240328
機(jī)床乙71840296
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為正品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機(jī)床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤的期望值為決策依據(jù),應(yīng)該如何安排生產(chǎn)最佳?

查看答案和解析>>

同步練習(xí)冊(cè)答案