【題目】2019213日《西安市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.

1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù);

2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會.

i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說明理由;

ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類專業(yè)的較多.請根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類專業(yè)”有關(guān)?(精確到0.1

閱讀時(shí)間不足8.5小時(shí)

閱讀時(shí)間超過8.5小時(shí)

理工類專業(yè)

40

60

非理工類專業(yè)

附:).

臨界值表:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)9, (2)(i)每周閱讀時(shí)間為的學(xué)生中抽取3名,每周閱讀時(shí)間為的學(xué)生中抽取6名.理由見解析, (ii)有的把握認(rèn)為學(xué)生閱讀時(shí)間不足與“是否理工類專業(yè)”有關(guān).

【解析】

1)取各區(qū)間中點(diǎn)值乘以頻率再相加即得;

2)(i)兩組差異明顯,用分層抽樣計(jì)算.(ii)求出兩組的人數(shù),填寫列聯(lián)表,計(jì)算可得.

1

2)(i)每周閱讀時(shí)間為的學(xué)生中抽取3名,每周閱讀時(shí)間為的學(xué)生中抽取6名.

理由:每周閱讀時(shí)間為與每周閱讀時(shí)間為是差異明顯的兩層,為保持樣本結(jié)構(gòu)與總體結(jié)構(gòu)的一致性,提高樣本的代表性,宜采用分層抽樣的方法抽取樣本;因?yàn)閮烧哳l率分別為0.1,0.2,所以按照進(jìn)行名額分配

ii列聯(lián)表為:

閱讀時(shí)間不足8.5小時(shí)

閱讀時(shí)間超過8.5小時(shí)

理工類專業(yè)

40

60

非理工類專業(yè)

26

74

,

所以有的把握認(rèn)為學(xué)生閱讀時(shí)間不足與“是否理工類專業(yè)”有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售某海鮮,統(tǒng)計(jì)了春節(jié)前后50天該海鮮的需求量,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤為元.

(1)求商店日利潤關(guān)于需求量的函數(shù)表達(dá)式;

(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.

①求這50天商店銷售該海鮮日利潤的平均數(shù);

②估計(jì)日利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校2011年到2019年參加北約”“華約考試而獲得加分的學(xué)生人數(shù)(每位學(xué)生只能參加北約”“華約中的一種考試)可以通過以下表格反映出來,(為了方便計(jì)算,將2011年編號為1,2012年編號為2,依此類推)

年份x

1

2

3

4

5

6

7

8

9

人數(shù)y

2

3

5

4

5

7

8

10

10

1)求這九年來,該校參加北約”“華約考試而獲得加分的學(xué)生人數(shù)的平均數(shù)和方差;

2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出yx的線性回歸方程,并依此預(yù)測該校2020年參加北約”“華約考試而獲得加分的學(xué)生人數(shù).(最終結(jié)果精確至個(gè)位)

參考數(shù)據(jù):回歸直線的方程是,其中,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,點(diǎn)滿足以為直徑的圓過橢圓的上頂點(diǎn).

1)求橢圓的方程;

2)已知直線過右焦點(diǎn)與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得為定值?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)經(jīng)過點(diǎn),且兩個(gè)焦點(diǎn),的坐標(biāo)依次為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè),是橢圓上的兩個(gè)動點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為,若,證明:直線與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計(jì)了近10年投入的年研發(fā)費(fèi)用與年銷售量 的數(shù)據(jù),得到散點(diǎn)圖如圖所示:

1)利用散點(diǎn)圖判斷,(其中為大于0的常數(shù))哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由).

2)對數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計(jì)量的值如下表:

根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

3)已知企業(yè)年利潤(單位:千萬元)與的關(guān)系為(其中),根據(jù)(2)的結(jié)果,要使得該企業(yè)下一年的年利潤最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?

附:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,過的直線交橢圓兩點(diǎn),若的最大值為5,則b的值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于曲線,有如下結(jié)論:

①曲線關(guān)于原點(diǎn)對稱;

②曲線關(guān)于坐標(biāo)軸對稱;

③曲線是封閉圖形;

④曲線不是封閉圖形,且它與圓無公共點(diǎn);

⑤曲線與曲線個(gè)交點(diǎn),這點(diǎn)構(gòu)成正方形.其中有正確結(jié)論的序號為__________

查看答案和解析>>

同步練習(xí)冊答案