【題目】關(guān)于曲線,有如下結(jié)論:

①曲線關(guān)于原點對稱;

②曲線關(guān)于坐標(biāo)軸對稱;

③曲線是封閉圖形;

④曲線不是封閉圖形,且它與圓無公共點;

⑤曲線與曲線個交點,這點構(gòu)成正方形.其中有正確結(jié)論的序號為__________

【答案】①②④⑤

【解析】

根據(jù)點關(guān)于點對稱及點關(guān)于坐標(biāo)軸對稱的性質(zhì)判斷,聯(lián)立方程構(gòu)造方程組,判斷方程的解的情況,即可判斷有無交點。

對于①,將方程中的換成換成方程不變,故①正確;

對于②,將方程中的換成換成方程不變,故②正確;

對于③,由方程得,,故曲線不是封閉圖形,故③錯誤;

對于④,聯(lián)立曲線方程組無解,無公共點,故④正確;

對于⑤,當(dāng),時,聯(lián)立曲線只有一解根據(jù)對稱性,共有4個交點,這點構(gòu)成正方形,故⑤正確。

故答案為:①②④⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019213日《西安市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動文明城市和文化強市建設(shè).某高校為了解條例發(fā)布以來全校學(xué)生的閱讀情況,隨機調(diào)查了200名學(xué)生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

1)求這200名學(xué)生每周閱讀時間的樣本平均數(shù);

2)為查找影響學(xué)生閱讀時間的因素,學(xué)校團(tuán)委決定從每周閱讀時間為,的學(xué)生中抽取9名參加座談會.

i)你認(rèn)為9個名額應(yīng)該怎么分配?并說明理由;

ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類專業(yè)的較多.請根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時間不足(每周閱讀時間不足8.5小時)與“是否理工類專業(yè)”有關(guān)?(精確到0.1

閱讀時間不足8.5小時

閱讀時間超過8.5小時

理工類專業(yè)

40

60

非理工類專業(yè)

附:).

臨界值表:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1-ax≤1+a}a0),B={x|x2-5x+4≤0}

1)若xAxB的必要不充分條件,求實數(shù)a的取值范圍;

2)對任意xB,不等式x2-mx+4≥0都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}中,a2=-8,a6=0

1)求數(shù)列{an}的通項公式;

2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,CMCN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺,記BC=a,AC=b,AB=c(單位:百米)

1)若ab,c成等差數(shù)列,且公差為4,求b的值;

2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點間的距離往往不是指兩點間的直線距離(位移),而是實際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義,兩點間的直角距離為:.

1)在平面直角坐標(biāo)系中,寫出所有滿足到原點的直角距離2格點的坐標(biāo).(格點指橫、縱坐標(biāo)均為整數(shù)的點)

2)求到兩定點直角距離和為定值的動點軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動點的軌跡.(在以下三個條件中任選一個做答)

,

,,;

,.

3)寫出同時滿足以下兩個條件的格點的坐標(biāo),并說明理由(格點指橫、縱坐標(biāo)均為整數(shù)的點).

①到,兩點直角距離相等;

②到,兩點直角距離和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的1200名學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

1這一組的頻數(shù)、頻率分別是多少?

2)估計這次環(huán)保知識競賽的及格率。(分及以上為及格)

3)若準(zhǔn)備取成績最好的300名發(fā)獎,則獲獎的最低分?jǐn)?shù)約為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進(jìn)行統(tǒng)計,得到頻率分布直方圖如圖1.

圖1 圖2

(1)記“在年成交的二手車中隨機選取一輛,該車的使用年限在”為事件試估計的概率;

(2)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):

5.5

8.7

1.9

301.4

79.75

385

①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;

②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.

附注:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;

②參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個1,個2,,個n.證明:并確定使等號成立的條件.

查看答案和解析>>

同步練習(xí)冊答案