一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.采取不放回抽樣方式,從中摸出兩個(gè)球,設(shè)摸得白球的個(gè)數(shù)為ξ,則Eξ=
2
3
2
3
分析:由題意知ξ可取0,1,2,當(dāng)ξ=0時(shí),表示摸出兩球中白球的個(gè)數(shù)為0,當(dāng)ξ=1時(shí),表示摸出兩球中白球的個(gè)數(shù)為1,當(dāng)ξ=2時(shí),表示摸出兩球中白球的個(gè)數(shù)為2,根據(jù)對(duì)應(yīng)的事件求出期望Eξ即可.
解答:解:由題意知:ξ可取0,1,2,
∵當(dāng)ξ=0時(shí),表示摸出兩球中白球的個(gè)數(shù)為0,
∴P(ξ=0)=
C
2
4
C
2
6
=
6
15
=
2
5
,
當(dāng)ξ=1時(shí),表示摸出兩球中白球的個(gè)數(shù)為1,
∴P(ξ=1)=
C
1
2
C
1
4
C
2
6
=
8
15

當(dāng)ξ=2時(shí),表示摸出兩球中白球的個(gè)數(shù)為2,
∴P(ξ=2)=
C
2
2
C
2
6
=
1
15

∴Eξ=0×
2
5
+1×
8
15
+2×
1
15
=
2
3
,
故答案為:
2
3
點(diǎn)評(píng):考查運(yùn)用概率知識(shí)解決實(shí)際問題的能力,是中檔題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的2個(gè)白球和3個(gè)黑球,從中摸出一個(gè)球,放回后再摸出一個(gè)球,則兩次摸出的球恰好顏色不同的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
(I)試用n表示一次摸獎(jiǎng)中獎(jiǎng)的概率p;
(II)記從口袋中三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為m,用p表示恰有一次中獎(jiǎng)的概率m,求m的最大值及m取最大值時(shí)p、n的值;
(III)當(dāng)n=15時(shí),將15個(gè)紅球全部取出,全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),共余的紅球記上0號(hào).并將標(biāo)號(hào)的15個(gè)紅球放人另一袋中,現(xiàn)從15個(gè)紅球的袋中任取一球,ξ表示所取球的標(biāo)號(hào),求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.
(1)采取放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的8個(gè)白球和7個(gè)黑球,從中任意摸出2個(gè)球,則摸出的2個(gè)球至少有一個(gè)是白球的概率是
86
105
86
105
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•孝感模擬)一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
(1)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為P.試問當(dāng)n等于多少時(shí),P的值最大?
(2)在(1)的條件下,將5個(gè)白球全部取出后,對(duì)剩下的n個(gè)紅球全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),其余的紅球記上0號(hào),現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號(hào),求ξ的分布列,期望和方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案