4.正方體ABCD-A1B1C1D1的棱長為2,P是面對角線BC1上一動點,Q是底面ABCD上一動點,則D1P+PQ的最小值為2+$\sqrt{2}$.

分析 把△CBB1沿BC1上轉(zhuǎn)90°,與平面BC1D1共面,當D1Q⊥BC時,D1P+PQ=D1Q最小.

解答 解:把△CBB1沿BC1上轉(zhuǎn)90°,與平面BC1D1共面,當D1Q⊥BC時,D1P+PQ=D1Q最小,
PD1=2$\sqrt{2}$,PQ=2($\frac{\sqrt{2}-1}{\sqrt{2}}$)=2-$\sqrt{2}$,
所以D1P+PQ的最小值為2+$\sqrt{2}$,
故答案為:2+$\sqrt{2}$.

點評 多面體和旋轉(zhuǎn)體表面上的最短距離問題的解法:求多面體表面上兩點間的最短距離,一般將表面展開為平面圖形,從而把它轉(zhuǎn)化為平面圖形內(nèi)兩點連線的最短長度問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知線段AB的端點B(4,6),端點A在圓(x-4)2+y2=100上移動.
(1)若線段AB的中點為M,那么點M的軌跡C是什么曲線
(2)若直線l:mx-y+1-m=0,求直線1被曲線C截得的最長和最短的弦的長及此時m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知a=log23.2,b=log43.4,c=log43.6,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若直線x+2ay=2a+2與直線ax+2y=a+1平行,則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知f(x)=$\frac{(a+1)x+a}{x+1}$,且f(x-1)的圖象的對稱中心是(0,3),則f′(2)的值為( 。
A.-$\frac{1}{9}$B.$\frac{1}{9}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列各組中的兩個函數(shù)是同一函數(shù)的為( 。
①y=$\frac{(x+1)(x-5)}{x+1}$,y=x-5
②y=x,y=$\root{3}{x^3}$
③y=x,y=$\sqrt{x^2}$
④y=log2(x-1)(x-2),y=log2(x-1)+log2(x-2)
A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知角α的終邊在直線y=2x上.
(1)求$\frac{2sinα-3cosα}{sinα+cosα}$的值;
(2)求$\frac{1}{{3{{sin}^2}α-sinαcosα-{{cos}^2}α}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a1=21,a7=15,則公差d=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.不等式$\frac{1-x}{3x+1}≥0$的解集為{x|-$\frac{1}{3}$<x≤1}.

查看答案和解析>>

同步練習冊答案