A. | $\frac{2n}{n+1}$ | B. | $\frac{2}{n(n+1)}$ | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{n}{2(n+1)}$ |
分析 通過將點P(an,an+1)代入直線y=x+1,進而可知數(shù)列{an}是首項、公差均為1的等差數(shù)列,從而裂項可知$\frac{1}{{S}_{n}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),進而并項相加即得結論.
解答 解:因為點P(an,an+1)在直線y=x+1上,
所以an+1=an+1,
又因為a1=1,
所以數(shù)列{an}是首項、公差均為1的等差數(shù)列,
所以Sn=$\frac{n(n+1)}{2}$,$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
所以$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$,
故選:A.
點評 本題考查數(shù)列的通項及前n項和,考查裂項相消法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 恒為負值 | B. | 恒為正值 | C. | 恒為零 | D. | 無法確定正負 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 2 | C. | $\frac{4}{3}$ | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-3,3] | B. | (-∞,-3]∪[3,+∞) | C. | (-∞,-1]∪[1,+∞) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
高一 | 高二 | 總計 | |
合格人數(shù) | 70 | x | 150 |
不合格人數(shù) | y | 20 | 50 |
總計 | 100 | 100 | 200 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com