10.已知x,y滿足約束條件$\left\{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最小值為( 。
A.-4B.-3C.-1D.3

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義進(jìn)行求解即可.

解答 解:作作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=x-y,得y=x-z表示,斜率為1縱截距為-z的一組平行直線,
平移直線y=x-z,當(dāng)直線y=x-z經(jīng)過點A時,和直線x-y=-1平行時,
直線y=x-z的截距最大,此時z最小,此時zmin=-1.
故選:C.

點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用z的幾何意義是解決線性規(guī)劃問題的關(guān)鍵,注意利用數(shù)形結(jié)合來解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.點P為△ABC邊AB上任一點,則使S△PBC≤$\frac{1}{3}$S△ABC的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:在△ABC中,若AB<BC,則sinC<sinA;命題q:已知a∈R,則“a>1”是“$\frac{1}{a}$<1”的必要不充分條件.在命題p∧q,p∨q,(¬p)∨q,(¬p)∧q中,真命題個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某市重點中學(xué)奧數(shù)培訓(xùn)班共有14人,分為兩個小組,在一次階段考試中兩個小組成績的莖葉圖如圖所示,其中甲組學(xué)生成績的平均數(shù)是88,乙組學(xué)生成績的中位數(shù)是89,則m+n的值是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將函數(shù)f(x)=$\sqrt{3}$sinx-cosx的圖象向左平移m個單位(m>0),若所得圖象對應(yīng)的函數(shù)為偶函數(shù),則m的最小值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)f(x)=sin($\frac{3π}{2}$+x)(cosx-2sinx)+sin2x的圖象向左平移$\frac{π}{8}$個單位長度后得到函數(shù)g(x),則g(x)具有性質(zhì)(  )
A.在(0,$\frac{π}{4}}$)上單調(diào)遞增,為奇函數(shù)B.周期為π,圖象關(guān)于($\frac{π}{4},0}$)對稱
C.最大值為$\sqrt{2}$,圖象關(guān)于直線x=$\frac{π}{2}$對稱D.在(-$\frac{π}{2},0}$)上單調(diào)遞增,為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=2cosx(cosx-sinx)最小正周期為π,當(dāng)x∈[0,$\frac{π}{6}$]時,函數(shù)f(x)的最小值為$\frac{3-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=sinx在區(qū)間[0,2π]上的圖象與x軸的交點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個幾何體的三視圖如圖,每個小格表示一個單位,則該幾何體的側(cè)面積為( 。
A.2$\sqrt{5}$πB.C.2π+2$\sqrt{5}$πD.

查看答案和解析>>

同步練習(xí)冊答案