20.點P為△ABC邊AB上任一點,則使S△PBC≤$\frac{1}{3}$S△ABC的概率是$\frac{1}{3}$.

分析 首先分析題目求在面積為S的△ABC的邊AB上任取一點P,使S△PBC≤$\frac{1}{3}$S△ABC得到三角形高的關(guān)系,利用幾何概型求概率.

解答 解:設(shè)P到BC的距離為h,
∵三角形ABC的面積為S,設(shè)BC邊上的高為d,
因為兩個三角形有共同的邊BC,所以滿足S△PBC≤$\frac{1}{3}$S△ABC 時,h≤$\frac{1}{3}$d,所以使S△PBC≤$\frac{1}{3}$S△ABC的概率為$\frac{{S}_{△PBC}}{{S}_{△ABC}}=\frac{1}{3}$;
故答案為:$\frac{1}{3}$.

點評 本題考查了幾何概型的概率計算,利用測度(長度、面積、體積)比求幾何概型概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=kx,g(x)=2lnx+2e($\frac{1}{e}$≤x≤e2),若f(x)與g(x)的圖象上分別存在點M,N,使得M,N關(guān)于直線y=e對稱,則實數(shù)k的取值范圍是(  )
A.[-$\frac{2}{e}$,-$\frac{4}{{e}^{2}}$]B.[-$\frac{2}{e}$,2e]C.[-$\frac{4}{{e}^{2}}$,2e]D.[$\frac{4}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=log2$\frac{2x-1}{x+2}$.
(1)求f(x)的定義域A;
(2)若函數(shù)g(x)=3x2+6x+2在[-1,a](a>-1)內(nèi)的值域為B,且A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在△ABC中,點D在邊BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.若△ABD的面積為7,則AB=$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y2=4x,點A(1,0)B(-1,0),點M在拋物線上,則∠MBA的最大值是( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(x-$\frac{a}{x}$)(1-$\sqrt{x}$)6的展開式中x的系數(shù)是31,則常數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設(shè)AB=2,若H為PD上的動點,EH與平面PAD所成最大角的正切值為$\frac{\sqrt{6}}{2}$,求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知P是拋物線M:y2=4x上的任意點,過點P作圓C:(x-3)2+y2=1的兩條切線,切點分別為A,B,連CA,CB,則四邊形PACB的面積最小值時,點 P的坐標(biāo)為(1,2)或(1,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最小值為(  )
A.-4B.-3C.-1D.3

查看答案和解析>>

同步練習(xí)冊答案