18.等比數(shù)列{an}的公比q>0,已知a2=2,an+2+an+1=6an,則{an}的前4項(xiàng)和S4=(  )
A.15B.20C.35D.40

分析 利用等比數(shù)列的通項(xiàng)公式求和公式及其性質(zhì)即可得出.

解答 解:∵等比數(shù)列{an}的公比q>0,a2=2,an+2+an+1=6an,
∴an(q2+q)=6an,化為:q2+q-6=0,解得q=2.
∴a1=$\frac{{a}_{2}}{q}$=1.
則{an}的前4項(xiàng)和S4=$\frac{{2}^{4}-1}{2-1}$=15.
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角大小為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知p:x-3=0和q:(x-3)(x-4)=0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}+tcosθ\\ y=tsinθ\end{array}\right.$,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α-2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若集合A={x|x<5,x∈N},B={x|(x-2)(x-7)≤0},集合M=A∩B,則M的子集個(gè)數(shù)為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S3=6,S5=15.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知△ABC的三個(gè)頂點(diǎn)分別是A(5,3).B(7,-1).C(-1,5),求下列條件下的直線方程:
(1)BC邊上的高線;
(2)中線BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知集合A={-1,0,1,2},B={0,2,6},則A∩B={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知復(fù)數(shù)z=(2a+i)(1-bi)的實(shí)部為2,其中a,b為正實(shí)數(shù),則4a+($\frac{1}{2}$)1-b的最小值為2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案