深圳市某校中學(xué)生籃球隊(duì)假期集訓(xùn),集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球(即沒有用過的球),3個(gè)是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個(gè)球,用完后放回.

(1)設(shè)第一次訓(xùn)練時(shí)取到的新球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;

(2)求第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率.

 

(1)ξ的分布列為

ξ

0

1

2

P

 

ξ的數(shù)學(xué)期望為E(ξ)=1

(2)

【解析】(1)ξ的所有可能取值為0,1,2.

設(shè)“第一次訓(xùn)練時(shí)取到i個(gè)新球(即ξ=i)”為事件Ai(i=0,1,2).

∵集訓(xùn)前共有6個(gè)籃球,其中3個(gè)是新球,3個(gè)是舊球,

∴P(A0)=P(ξ=0)=,

P(A1)=P(ξ=1)=,

P(A2)=P(ξ=2)=

∴ξ的分布列為

ξ

0

1

2

P

ξ的數(shù)學(xué)期望為E(ξ)=0×+1×+2×=1.

(2)設(shè)“從6個(gè)球中任意取出2個(gè)球,恰好取到一個(gè)新球”為事件B.

則“第二次訓(xùn)練時(shí)恰好取到一個(gè)新球”就是事件A0B+A1B+A2B.而事件A0B,A1B,A2B互斥,

∴P(A0B+A1B+A2B)=P(A0B)+P(A1B)+P(A2B).

由條件概率公式,得

P(A0B)=P(A0)P(B|A0)=××,

P(A1B)=P(A1)P(B|A1)=××,

P(A2B)=P(A2)P(B|A2)=××,

∴第二次訓(xùn)練時(shí)恰好取到一個(gè)新球的概率為

P(A0B+A1B+A2B)=

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:選擇題

若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是(  )

A.(-∞,2] B.[2,+∞)

C.[-2,+∞) D.(-∞,-2]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:解答題

設(shè)f(x)=ln(1+x)-x-ax2.

(1)當(dāng)x=1時(shí),f(x)取到極值,求a的值;

(2)當(dāng)a滿足什么條件時(shí),f(x)在區(qū)間[-,-]上有單調(diào)遞增區(qū)間?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:填空題

已知函數(shù)f(x)=x-sinx-cosx的圖象在點(diǎn)A(x0,y0)處的切線斜率為1,則tanx0=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:選擇題

函數(shù)y=-x2+1(0<x<2)的圖象上任意點(diǎn)處切線的傾斜角記為α,則α的最小值是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布(解析版) 題型:選擇題

在高三的一個(gè)班中,有的學(xué)生數(shù)學(xué)成績優(yōu)秀,若從班中隨機(jī)找出5名學(xué)生,那么數(shù)學(xué)成績優(yōu)秀的學(xué)生數(shù)ξ~B(5,),則P(ξ=k)取最大值的k值為(  )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:填空題

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡歷.假定該畢業(yè)生得到甲公司面試的概率為,得到乙、丙兩公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-6幾何概型(解析版) 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對應(yīng)的點(diǎn)為M.

(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率;

(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-4隨機(jī)事件的概率(解析版) 題型:選擇題

5張卡片上分別寫有數(shù)字1,2,3,4,5,從這5張卡片中隨機(jī)抽取2張,則取出2張卡片上數(shù)字之和為偶數(shù)的概率為(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案