已知直線y=k(x+2)與圓O:x2+y2=2交于A、B兩點,若|AB|=2則實數(shù)k的值為(  )
A、±
3
3
B、±
2
2
C、±
2
D、±
3
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:由已知得圓心O(0,0)到直線y=k(x+2)的距離為
2-1
=1,由點到直線的距離公式得d=
|0-0+2k|
k2+1
=1,由此能求出結(jié)果.
解答: 解:∵直線y=k(x+2)與圓O:x2+y2=2交于A、B兩點,|AB|=2,
∴圓心O(0,0)到直線y=k(x+2)的距離為
2-1
=1,
∴d=
|0-0+2k|
k2+1
=1,
解得k=±
3
3

故選:A.
點評:本題考查滿足條件的實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意點到直線的距離公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+6),則實數(shù)c的值為( 。
A、4
B、3
C、9
D、
9
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)據(jù)10,7,7,7,9的方差是( 。
A、8
B、
8
5
C、2
2
D、
2
10
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條件:
x-y+2≤0
x≥0
3x+y-6≤0
,則z=x+3y的最小值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=3x與y=log3x的圖象( 。
A、關(guān)于原點對稱
B、關(guān)于x軸對稱
C、關(guān)于y軸對稱.
D、關(guān)于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=2x,對任意的 x1、x2(x1≠x2),考慮如下結(jié)論:
①f (x1•x2)=f (x1)+f (x2);    
②f (x1+x2)=f (x1)•f (x2);    
③f (-x1)=
1
f(x1)
;
f(x1)-1
x1
<0 (x1≠0);     
f(x1)+f(x2)
2
>f(
x1+x2
2
)

則上述結(jié)論中正確的是
 
(只填入正確結(jié)論對應(yīng)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x(2-x).
(1)求f(x)的解析式;
(2)畫f(x)的圖象并寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(x+2)-1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中mn>0,則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(普通理科做)若直線y=3x+1是曲線y=x3-a的一條切線,則a的值為(  )
A、-3或1B、1C、-3D、3

查看答案和解析>>

同步練習冊答案